
 

 
 
 

Unified Medical Language System 
Knowledge Source Server (UMLSKS) 

 
 

 
 
 
 
 
 
 
 

Developer’s Guide 
 

Version 4.2 
 

July, 2004 
 

Revision 1.0 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 



UMLSKS Developer’s Guide 

ii 

 



 UMLSKS Developer’s Guide 

i 

Table of Contents 
About This Guide viii 

Audience viii 
Release Notes viii 
How to Use This Guide viii 
If You Need Help… viii 

1 Introduction 1-1 
1.1 Requirements Summary 1-1 

1.1.1 Key Requirements and Design Goals 1-1 
1.2 External Interfaces 1-1 
1.3 Performance, Sizing and Loading 1-2 
1.4 Logical Architecture 1-2 
1.5 Physical Architecture 1-2 

2 Installing the UMLSKS 2-1 

3 Building UMLSKS Software Applications 3-1 
3.1 Building and Running Your Program 3-1 

3.1.1 Building the Example.java Files 3-2 
3.1.2 Running the Client 3-2 
3.1.3 Running the ExpertClient 3-3 
3.1.4 Running the SocketClient 3-3 
3.1.5 Running the StandardQueryClient 3-4 

3.2 API Package Structure 3-4 
3.2.1 Package gov.nih.nlm.kss.api 3-5 
3.2.2 Package gov.nih.nlm.kss.util 3-6 

3.3 Program Initialization 3-6 
3.4 UMLSKS API Functions 3-7 
3.5 Using the UMLSKS Object Model 3-23 

3.5.1 Properties Required by a UMLSKS Client 3-23 
3.5.2 Package gov.nih.nlm.kss.models 3-24 
3.5.3 Package gov.nih.nlm.kss.models.meta.concept 3-25 
3.5.4 Package gov.nih.nlm.kss.models.meta.context 3-26 
3.5.5 Package gov.nih.nlm.kss.models.meta.assocExp 3-27 
3.5.6 Package gov.nih.nlm.kss.models.meta.attribute 3-27 
3.5.7 Package gov.nih.nlm.kss.models.meta.cooccurrence 3-28 
3.5.8 Package gov.nih.nlm.kss.models.meta.locator 3-29 
3.5.9 Package gov.nih.nlm.kss.models.meta.meshentry 3-29 
3.5.10 Package gov.nih.nlm.kss.models.meta.relation 3-29 
3.5.11 Package gov.nih.nlm.kss.models.meta.source 3-30 
3.5.12 Package gov.nih.nlm.kss.models.meta.deltas 3-30 
3.5.13 Package gov.nih.nlm.kss.models.meta 3-30 
3.5.14 Package gov.nih.nlm.kss.models.sem.units 3-31 
3.5.15 Package gov.nih.nlm.kss.models.sem.rels 3-32 
3.5.16 Package gov.nih.nlm.kss.models.lex 3-32 



UMLSKS Developer’s Guide 

ii 

4 Using the XML Query Facility 4-1 
4.1 Retrieving Metathesaurus and Semantic Network Data using an XML Query 4-1 
4.2 Structure of an XML Query 4-1 
4.3 Metathesaurus and Semantic Network Table Contents 4-2 

4.3.1 Table ‘mrcon’ 4-2 
4.3.2 Table ‘mrso’ 4-3 
4.3.3 Table ‘mrdef’ 4-3 
4.3.4 Table ‘mrsty’ 4-3 
4.3.5 Table ‘mrrel’ 4-3 
4.3.6 Table ‘mratx’ 4-4 
4.3.7 Table ‘mrcxt’ 4-4 
4.3.8 Table ‘mrcoc’ 4-5 
4.3.9 Table ‘mrsat’ 4-6 
4.3.10 Table ‘mrlo’ 4-7 
4.3.11 Table ‘mrxns_eng’ 4-7 
4.3.12 Table ‘mrxnw_eng’ 4-8 
4.3.13 Table ‘mrxw_eng’ 4-8 
4.3.14 Table ‘mrcui’ 4-8 
4.3.15 Table ‘mrsab’ 4-9 
4.3.16 Table ‘mshqual’ 4-9 
4.3.17 Table ‘strattr’ 4-9 
4.3.18 Table ‘ttys’ 4-10 
4.3.19 Table ‘cots’ 4-10 
4.3.20 Table ‘stts’ 4-10 
4.3.21 Table ‘rels’ 4-10 
4.3.22 Table ‘srdef’ 4-10 
4.3.23 Table ‘srgrp’ 4-11 
4.3.24 Table ‘srstr’ 4-11 
4.3.25 Table ‘srstre1’ 4-11 
4.3.26 Table ‘srstre2’ 4-11 
4.3.27 Table ‘mrconso’ 4-12 
4.3.28 Table ‘mrdoc’ 4-12 
4.3.29 Table ‘mrhier’ 4-12 
4.3.30 Table ‘mrhist’ 4-13 
4.3.31 Table ‘mrmap’ 4-13 

4.4 XML Query Example 4-13 

5 Using the UMLSKS Socket Server 5-1 
5.1 Connecting to the UMLSKS Socket Server 5-1 
5.2 General Queries 5-1 

5.2.1 XML Query getCurrentUMLSVersion 5-1 
5.2.2 XML Query getUMLSVersions 5-1 
5.2.3 XML Query getSWVersion 5-1 
5.2.4 XML Query query 5-1 
5.2.5 XML Query describeCurrentUMLSVersion 5-1 
5.2.6 XML Query describeUMLSVersions 5-1 
5.2.7 XML Query listDocEntryTypes 5-2 



 UMLSKS Developer’s Guide 

iii 

5.3 Metathesaurus Queries 5-2 
5.3.1 XML Query listDictionaries 5-2 
5.3.2 XML Query suggestSpelling 5-2 
5.3.3 XML Query getConceptName 5-2 
5.3.4 XML Query findCUI 5-3 
5.3.5 XML Query getConceptProperties 5-4 
5.3.6 XML Query findConcept 5-4 
5.3.7 XML Query getBasicConceptProperties 5-5 
5.3.8 XML Query findBasicConcept 5-6 
5.3.9 XML Query getTerminology 5-7 
5.3.10 XML Query getTerms 5-7 
5.3.11 XML Query getDefinition 5-8 
5.3.12 XML Query getSemanticType 5-9 
5.3.13 XML Query getContext 5-9 
5.3.14 XML Query getAssocExprs 5-9 
5.3.15 XML Query getCooccurrences 5-10 
5.3.16 XML Query getRelations 5-10 
5.3.17 XML Query getStringAttributes 5-11 
5.3.18 XML Query getLocator –or- getLocators 5-12 
5.3.19 XML Query getMeSHEntries 5-12 
5.3.20 XML Query getMeSHInfo 5-13 
5.3.21 XML Query getRawRecords 5-13 
5.3.22 XML Query describeSource 5-13 
5.3.23 XML Query listSources 5-14 
5.3.24 XML Query findLUI 5-14 
5.3.25 XML Query getTermsForLUI 5-15 
5.3.26 XML Query findSUI 5-15 
5.3.27 XML Query getStringsForSUI 5-16 
5.3.28 XML Query listStrAttrs 5-16 
5.3.29 XML Query listMeSHQuals 5-16 
5.3.30 XML Query describeUMLSChanges 5-17 
5.3.31 XML Query listTermTypes 5-17 
5.3.32 XML Query listCooccurrenceTypes 5-18 
5.3.33 XML Query listStringTypes 5-18 
5.3.34 XML Query listRelationTypes 5-18 
5.3.35 XML Query listMetaTableNames 5-19 
5.3.36 XML Query listRelationTypes 5-19 

5.4 Semantic Network Queries 5-19 
5.4.1 XML Query findSemType 5-19 
5.4.2 XML Query getSemTypeProperties 5-20 
5.4.3 XML Query getSemTypeAncestors 5-20 
5.4.4 XML Query getSemTypeSiblings 5-20 
5.4.5 XML Query listSemTypeIds 5-21 
5.4.6 XML Query findSemRelation 5-21 
5.4.7 XML Query getSemRelationProperties 5-22 
5.4.8 XML Query getSemRelationAncestors 5-22 
5.4.9 XML Query listSemRelationIds 5-22 



UMLSKS Developer’s Guide 

iv 

5.4.10 XML Query existsAssociativeRelation 5-23 
5.4.11 XML Query getAssociativeRelations 5-23 
5.4.12 XML Query existsHierRelRelRelation 5-24 
5.4.13 XML Query listSemGroups 5-24 
5.4.14 XML Query listSemTypes 5-25 
5.4.15 XML Query getSemGroup 5-25 
5.4.16 XML Query findBasicSemType 5-25 
5.4.17 XML Query findBasicSemRelation 5-26 
5.4.18 XML Query listSemNetTableNames 5-26 

5.5 SPECIALIST Lexicon Queries 5-26 
5.5.1 XML Query getLexicalRecords 5-26 



 UMLSKS Developer’s Guide 

v 

 
Acronym List 

 
API Application Programmer Interface 
CUI Concept Unique Identifier 
FTP File Transfer Protocol 
HHS Health and Human Services 
HTTP Hypertext Transfer Protocol 
UMLSKS Knowledge Source Server 
NIH National Institutes of Health 
NLM National Library of Medicine 
RAM Random Access Memory 
RMI Remote Method Invocation 
UMLS Unified Medical Language System 
XML eXtensible Markup Language 
 



UMLSKS Developer’s Guide 

vi 

List of Figures 
 
Figure 1 - Logical System Diagram ......................................................................................................1-2 
Figure 2 - Physical System Environment ..............................................................................................1-3 
Figure 3 – Client.java Menu.........................................................................................................3-3 
Figure 4 – UMLSKS API Packages ......................................................................................................3-5 
Figure 5 – UMLSKS Connection Class ................................................................................................3-6 
Figure 6 – UMLSKS Utility Classes.....................................................................................................3-6 



 UMLSKS Developer’s Guide 

vii 

Revision History 
 

March, 2004 Initial creation after separation from the User’s Guide 
July, 2004 Addition of the Release 4.2 API interface classes. 

 



UMLSKS Developer’s Guide 

viii 

About This Guide 
This guide describes the installation, usage, and programmatic interface for the UMLS Knowledge 
Source Server (UMLSKS). 

Audience 
The audience for this guide is developers of UMLSKS applications using the UMLSKS API. 

Release Notes 
Please refer to the Release Bulletin found in the umlsks.nlm.nih.gov web site for detailed information 
about the changes found in each release of the UMLSKS software. 

How to Use This Guide 
This manual contains the following chapters: 

• Chapter  1 - Introduction describes the basic features and architecture of the UMLSKS. 

• Chapter  2 - Installing the UMLSKS provides administrators instructions on installing and 
tailoring a UMLSKS installation. 

• Chapter  3 - Building UMLSKS Software Applications  describes the functions available to 
developers wanting to interface to the UMLSKS through another Java program. 

• Chapter  4 - Using the XML Query Facility describes how to use the querying facility of the 
UMLSKS wherein users build XML queries to be executed. 

• Chapter  5 - Using the UMLSKS Socket Server describes how to use the socket server to pass 
XML formatted commands or command-line type queries (e.g. ks –meta –c aids) that are 
to be executed by the server, with the results passed back to the client listening to the socket for 
a response. 

If You Need Help… 
If you run into problems with the UMLSKS, please first consult the User's Guide for detailed 
instructions on usage and known problems with the system. Should you still encounter problems, 
please send a detailed message via email to the development team at the following email address: 
umlsks@nlm.nih.gov. Be sure to include the release version number for the UMLSKS system with 
your mailing. 



 UMLSKS Developer’s Guide 

 





UMLSKS Developer’s Guide Chapter 1 – Introduction  

1-1 

1 Introduction 
The Unified Medical Language System (UMLS) Knowledge Sources and related lexical programs, 
developed at the U.S. National Library of Medicine (NLM), provide access to the UMLS. The 
Metathesaurus, the Semantic Network, and the SPECIALIST Lexicon are part of the UMLS and are 
designed primarily for use by system developers. They are meant to be consulted and used by 
application programs to interpret and refine user queries, to map the user's terms to appropriate 
controlled vocabularies and classification schemes, to interpret natural language, and to assist in 
structured data creation. They are also useful as reference tools for database builders, librarians and 
other information professionals. 

The UMLS Knowledge Source Server (UMLSKS) is the set of machines, programs and Application 
Programmer Interfaces (APIs), written in Java, located and maintained by staff at the NLM that allow 
access to the UMLSKS services. This document describes the system architecture for this version of 
the UMLS Knowledge Source Server and supporting systems and tools. For the remainder of the 
document, UMLSKS will be used as shorthand for the UMLS Knowledge Source Server. 

1.1 Requirements Summary 

1.1.1 Key Requirements and Design Goals 
The driving requirements for the UMLSKS are as follows: 

• Public access to UMLS Knowledge Sources via a web interface. 
• Programmer access to the same functions and features of the UMLSKS available from the web 

interface. 
• 24x7 availability, with minimal down time. 

 

Additional design goals: 

• Extensibility: the system is expected to have a long life and should improve with the 
technology over time. 

• Scalability: the system is expected to handle an increasing number of user requests and larger 
UMLS vocabularies. 

• Ease of administration: NLM and its contractors should be able to operate and maintain the 
system with a minimum of effort. 

• System and software upgrades should generally not require any interruption of service, 
although moderate performance degradation is acceptable. 

1.2 External Interfaces 
The UMLSKS provides three mechanisms for external entities to interface with the UMLSKS. The 
first is through a web server running on a local machine at the NLM; the second is through an 
Application Programmer Interface (API) that connects user programs to the UMLSKS; and the third is 
a TCP/IP socket interface for non-Java programs to access the services of the UMLSKS. The web 
interface provides links to several web sites providing related information and services. The National 
Library of Medicine (NLM), National Institutes of Health (NIH), Health and Human Services (HHS) 
and other government organizations maintain these sites. 



Chapter 1 – Introduction UMLSKS Developer’s Guide 

1-2 

1.3 Performance, Sizing and Loading 
The UMLSKS system is expected to occupy approximately 200 MB of disk space per UMLS release. 
The RAM required to efficiently run the UMLSKS will be determined during system testing but is 
expected to be on the order of 4 GB. Load balancing and changes to the machine configurations may 
be made after initial testing is complete. 

1.4 Logical Architecture 
The logical system architecture for the Knowledge Source Server is shown at a high level in Figure 1.  
The services of the UMLSKS can be accessed three different ways: through a web client using a 
standard browser (Netscape or Internet Explorer), through a program written to use the UMLSKS API, 
or through a TCP/IP socket-based interface. Data is returned to the user in XML form. A set of classes 
that provide a data-centric representation of the UMLS Metathesaurus, Semantic Network, and 
SPECIALIST Lexicon is provided with the API and is capable of reading the XML generated by the 
API methods (except query, see Section  3.4). 

The web interface issues HTTP requests through the Internet to a web server. The web server then 
issues a request using Java’s Remote Method Invocation (RMI) methodology to execute a particular 
function on behalf of the user. The RMI Server receives the request, executes the request against the 
database, and formulates and returns that result to the web interface in XML.  

The API issues RMI requests through the Internet directly to the RMI server using the RMI protocol. 
The RMI Server receives the request, executes the request against the database, and formulates and 
returns the result to the client API in one of two forms. The client program can request the information 
be returned in XML form and may subsequently use the Object Model classes to interpret the data as a 
set of data-centric objects. The object form is a set of classes that can be incorporated into the client 
application that provide functions for directly manipulating the database request results from within a 
Java program. 

Web server
UMLSKS

API

Internet

RMI Server

Socket Server

Oracle
Database

HTTP/HTML

TCP/IP/XML

UMLSKS
API

RMI/XML

RMI/XML

UMLSKS API

Socket API Client

RMI API Client

Web Client

 
Figure 1 - Logical System Diagram 

1.5 Physical Architecture 
The four machines shown in Figure 2 will be used for the UMLSKS.  



UMLSKS Developer’s Guide Chapter 1 – Introduction  

1-3 

 
Figure 2 - Physical System Environment 

Machine Hardware Configuration Functions 
umlsks1 Enterprise 4000, 4 CPU Sun 

Microsystems machine, 2 GB RAM 
- Resonate Back-up Server 
- Web Server 
- UMLSKS Server/Oracle Database 

umlsks2 Sun Sparc Ultra 2 workstation - Primary Resonate Server 
- MySQL User Accounts Database 

umlsks4 Sun Sparc Ultra 2 workstation with 
2 GB RAM 

- Web Server 
- UMLSKS Server/Oracle Database 

umlsks5 Sun Sparc Ultra 2 workstation with 
2 GB RAM 

- Web Server 
- UMLSKS Server/Oracle Database 

Table 1 – Physical Machine/Processing Function Map 





UMLSKS Developer’s Guide Chapter 2 – Installing the UMLSKS  

2-1 

2 Installing the UMLSKS 
The UMLSKS consists of software developed in the Cognitive Sciences Branch of the Lister Hill 
National Center for Biomedical Communications, a division of the National Library of Medicine, and 
a number of third party applications/toolkits. At this time, the UMLSKS is not available for user 
download and local installation. Plans are in place to develop a downloadable version. When this 
version becomes available, this chapter will detail instructions for downloading, installing, and 
running the UMLSKS on a user’s local machine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-1 

3 Building UMLSKS Software Applications  
The UMLSKS API provides Java developers with convenience functions for retrieving Metathesaurus, 
Semantic Network, and SPECIALIST Lexicon data from the UMLSKS and a set of classes that place 
an object model representation upon that data for convenience. The API is based upon Java's Remote 
Method Invocation (RMI) communications protocols. 

3.1 Building and Running Your Program 
The complete set of files for the UMLSKS API may be downloaded from the UMLSKS website. The 
UMLSKS API download includes sample Java programs that exercise the various functions of the 
API. The following instructions describe how to build and run these sample clients. Building and 
running your program will use similar steps. Upon downloading of the kss-api-X.jar file, where 
X is the version indicator for the software, you will need to "unjar" the contents into a local 
directory, hereafter referred to as <APIINSTALLDIR>. For example, to install version 4.0 of the 
API, you would execute the following: 

cd <APIINSTALLDIR> 
jar xvf ./kss-api-4.2.jar 

 
After ‘unjar’ring the contents, you will see at a minimum the following files and directories in 
<APIINSTALLDIR>: 

data/ example/ html/ lib/ META-INF/ README.html 
 
File/Directory Description 
data/ Contains required data files for use with the object model, 

including the client properties file.  
data/sampleCommands/ The directory holds a set of sample commands that may be used 

as input to the StandardQueryExecutor.request 
method. 

data/sampleQueries/ The directory holds a set of sample queries that may be used with 
the KSSRetriever.query method. 

data/sampleXMLOutput/ Contains the output in XML for the various API methods. 
example/ Contains example .java files that exercise the various API 

functionalities of the UMLSKS. 
html/ Documentation describing the object model in detail and the 

UMLSKS RMI interface classes. 
lib/ Contains the .jar files that must reside in the CLASSPATH for 

client programs to execute properly. 
lib/kss-api-X.jar Java .jar file containing the object model, UMLSKS interface 

classes, and necessary third party classes with which a Java client 
program “links”. X is the version of the API. 

META-INF/ Directory containing the manifest of the.jar file contents. 
README.html Describes the installation of the client API. 
 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-2 

3.1.1 Building the Example.java Files 
The .java files, located in the example directory, are all Java programs and must be compiled with a 
Java 1.2 or later compiler. Assuming that Java is installed in /usr/java and your current working 
directory is set to <APIINSTALLDIR>, the command to build the program is 
/usr/java/javac –classpath .:../lib/java/kss-api-4.2.jar *.java 

 
Once all files are compiled, a number of class files will appear in the directory. These class files are 
used to run the sample applications that connect to the UMLSKS. 

3.1.2 Running the Client 
Each Client class provides a command-line entry points to execute all API functions for a given 
software release except the function to query the UMLSKS using an XML formatted query. Assuming 
that the version of Java you are using is installed in /usr/java and your current working directory is 
set to <APIINSTALLDIR>, the command to run the each program is 
/usr/java/java –classpath .:../lib/java/kss-api-4.2.jar <CLIENT> \ 

<SVRHOST> <SVRNAME> 
where,  

• <CLIENT> is the full package class name of the client class to be run; 
• <SVRHOST> is the hostname of the server running the UMLSKS which should be 

“umlsks.nlm.nih.gov” ; and 
• <SVRNAME> is the name of the UMLSKS Service, “KSSRetriever“. 

 
Note: If upon running the client you immediately receive a Java RemoteException indicating the 
connection could not be established, either one of two things has occurred. The first thing could be that 
the UMLSKS was installed on a different host or the service name is not KSSRetriever. In either 
case, see your UMLSKS administrator for the actual names to be used. The second thing could be that 
the UMLSKS is down for maintenance. Your UMLSKS administrator should be notified immediately 
of any unplanned outages of service.  

This command assumes that class files listed previously and the.jar file are located in the current 
working directory. If the files are located elsewhere, then the CLASSPATH should be set to 
appropriately locate the .class and .jar files. 

Once running, you will be presenting with a number of options in menu form similar to the one shown 
in Figure 3. 

 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-3 

 
Figure 3 – Client.java Menu 

For each of the menu options, you will be requested to enter necessary details required to complete the 
function's execution. For example, by selecting the option to find a concept using an input term when 
executing the Client.class, you will be prompted to enter the CUI or term name for the concept, 
any source abbreviation filtering, and any language filtering, and an output form (either to the screen 
or to a file). The data returned to the user and subsequently displayed or written to the output file are 
an XML formatted set of data. See some example output for details on the returned XML documents 
for each of the functions. 

3.1.3 Running the ExpertClient  
The ExpertClient class provides a command-line entry point to execute the function to query the 
UMLSKS using an XML formatted query. Assuming that the version of Java you are using is installed 
in /usr/java and your current working directory is set to <APIINSTALLDIR>, the command to 
run the program is 

/usr/java/java –classpath .:../lib/kss-api-4.2.jar \  
ExpertClient <SVRHOST> <SVRNAME> <XMLQueryFile> 

where,  

• <SVRHOST> is the hostname of the server running the UMLSKS which should be 
umlsks.nlm.nih.gov, and 

• <SVRNAME> is the name of the UMLSKS Service, KSSRetriever, and 
• <XMLQueryFile> is the full path to a file containing an XML query as described in 

Section  4.2. 
This command assumes that class files listed previously and the.jar file are located in the current 
working directory. If the files are located elsewhere, then the CLASSPATH should be set to 
appropriately locate the .class and .jar files. 

Once running, you will see the XML output of the execution of the query contained within the 
argument XML query file output to the screen. 

3.1.4 Running the SocketClient  
The SocketClient class provides a command-line entry point to execute the Socket Server 
interface portion of the UMLSKS. The Socket Server accepts XML formatted commands and returns 
the resulting XML data through the same socket interface and is subsequently printed to the screen. 
Assuming that the version of Java you are using is installed in /usr/java and your current working 
directory is set to <APIINSTALLDIR>, the command to run the program is 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-4 

/usr/java/java –classpath .:../lib/kss-api-4.0.jar \  
SocketClient <SVRHOST> <SVRNAME> <XMLCmdFile> 

where,  

• <SVRHOST> is the hostname of the server running the UMLSKS which should be 
umlsks.nlm.nih.gov, and 

• <SVRNAME> is the name of the UMLSKS Socket Server port number, 8042, and 
• <XMLCmdFile> is the full path to a file containing a standard query defined in XML. 

Examples of these queries are described in Chapter  4. 
 

This command assumes that class files listed previously and the .jar file are located in the current 
working directory. If the files are located elsewhere, then the CLASSPATH should be set to 
appropriately locate the .class and .jar files. 

Once running, you will see the XML output of the execution of the query contained within the 
argument XML query file output to the screen. 

3.1.5 Running the StandardQueryClient  
The StandardQueryClient class provides a command-line entry point to execute the 
functionality provided by the StandardQueryExecutor class. Assuming that the version of Java 
you are running is installed in /usr/java and your current working directory is set to 
<APIINSTALLDIR>, the command to run the program is 

/usr/java/java –classpath .:../lib/kss-api-4.0.jar \  
StandardQueryClient <SVRHOST> <SVRNAME> \ 
<XMLQueryFile> 

where,  

• <SVRHOST> is the hostname of the server running the UMLSKS which should be 
umlsks.nlm.nih.gov, and 

• <SVRNAME> is the name of the UMLSKS Socket Server port number, 8042, and 
• <XMLQueryFile> is the full path to a file containing a standard query defined in XML. 

Examples of these queries are described in Chapter  5. 
 

This command assumes that class files listed previously and the .jar file are located in the current 
working directory. If the files are located elsewhere, then the CLASSPATH should be set to 
appropriately locate the .class and .jar files. 

Once running, you will see the XML output of the execution of the query contained within the 
argument XML query file output to the screen. 

3.2 API Package Structure 
The packages shown in Figure 4, are contained within the kss-api-4.2.jar file and constitute the 
required set of packages to enable API communication with the UMLSKS. 

Package Name Package Description 
gov.nih.nlm.kss.api KSSRetriever, KSSRetrieverV2_1 (Version 2.1), 

KSSRetrieverV3_0 (Version 3.0), 
KSSRetrieverV4_0 (Version 4.0), and 
KSSRetrieverV4_2 (Version 4.2) interface 
definitions. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-5 

Package Name Package Description 
gov.nih.nlm.kss.example Examples that exercise the various API 

functionalities of the UMLSKS. 
gov.nih.nlm.kss.util Utilities classes used by the retrieval classes and 

the object model classes. 
gov.nih.nlm.kss.models Object model classes for UMLSKS related data 

including classes to support spelling suggestions 
(V2.1) and ingestion of UMLS releases (V2.1). 

gov.nih.nlm.kss.models.meta Metathesaurus object model classes 
gov.nih.nlm.kss.models.meta.assocExp Object model classes representing associated 

expressions of a concept. 
gov.nih.nlm.kss.models.meta.attribute Object model classes representing attributes of a 

term. 
gov.nih.nlm.kss.models.meta.concept Object model classes representing a 

Metathesaurus concept. 
gov.nih.nlm.kss.models.meta.context Object model classes representing a 

Metathesaurus concept’s hierarchical context. 
gov.nih.nlm.kss.models.meta.cooccurrence Object model classes representing co-occurring 

concepts amongst different UMLS sources. 
gov.nih.nlm.kss.models.meta.deltas Object model classes found in Version 2.1 

representing the changes in the Metathesaurus 
for the various UMLS releases. 

gov.nih.nlm.kss.models.meta.locator Object model classes representing concept 
locator information. 

gov.nih.nlm.kss.models.meta.meshentry Object model classes representing the MeSH 
entries for a specific term name. 

gov.nih.nlm.kss.models.meta.relation Object model classes representing a concept’s 
relations. 

gov.nih.nlm.kss.models.meta.source Object model for a UMLS source. 
  

gov.nih.nlm.kss.models.sem Semantic Network object model classes 
gov.nih.nlm.kss.models.sem.units Object model classes representing the 

components within the Semantic Network 
gov.nih.nlm.kss.modesl.sem.rels Object model classes representing the associative 

and hierarchical relations within the Semantic 
Network 

gov.nih.nlm.kss.models.lex SPECIALIST Lexicon object model classes 
Figure 4 – UMLSKS API Packages 

 
Packages gov.nih.nlm.kss.api and gov.nih.nlm.kss.util are described in the 
following sections. The packages relating to the Object Model, gov.nih.nlm.kss.models.* are 
described in Section  0. 

3.2.1 Package gov.nih.nlm.kss.api 
Figure 5 lists the classes and their descriptions for the gov.nih.nlm.kss.api package. 

Class Description 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-6 

Class Description 
KSSRetriever Java Interface file defining the available Version 2.0 and later API functions 

for Java programs. 
KSSRetrieverV2_1 Java interface file defining the available Version 2.1 API functions for Java 

programs. 
KSSRetrieverV3_0 Java interface file defining the available Version 3.0 API functions for Java 

programs. 
KSSRetrieverV4_0 Java interface file defining the available Version 4.0 API functions for Java 

programs. 
KSSRetrieverV4_2 Java interface file defining the available Version 4.2 API functions for Java 

programs. 
Figure 5 – UMLSKS Connection Class 

3.2.2 Package gov.nih.nlm.kss.util 
Figure 6 lists the classes and their descriptions for the gov.nih.nlm.kss.util package. 

Class Description 
Util Set of utility functions that enable reading of properties files and retrieval of 

necessary files for use with the Object Model. 
DatabaseException Class encapsulating details about an exception that occurred when 

attempting to access the UMLSKS data. 
XMLInterpreter Class from which all object model instances extend, providing useful utility 

functions for ingesting XML generated by the UMLSKS. 
XMLException Class encapsulating details about an exception generated during the reading 

of an XML document by the Object Model. 
Figure 6 – UMLSKS Utility Classes 

3.3 Program Initialization 
The UMLSKS is implemented using the Remote Method Invocation feature of the Java language. RMI 
is a mechanism that enables an object on one Java virtual machine to invoke methods on an object in 
another Java virtual machine. Any object that can be invoked this way implements the Remote 
Interface. When such an object is invoked, its arguments are "marshaled" and sent from the local 
virtual machine to the remote one, where the arguments are "unmarshalled." When the method 
terminates, the results are marshaled from the remote machine and sent to the caller's virtual machine. 
If the method invocation results in an exception being thrown, the exception is indicated to the caller. 
The RMI interfaces are implemented in such a manner. This allows client programs to make calls 
"directly" as if the server were running locally.  

The RMI registry acts as the router to establish a connection to a remote object running on a remote 
Java virtual machine. To request a "handle" to a remote object, you request one from the RMI registry 
using the assigned object name and host machine on which the object is running. In the case of the 
UMLSKS, the KSSRetrieverV4_2 (which extends each of the interfaces KSSRetriever, 
KSSRetrieverV2_1, KSSRetrieverV3_0, and KSSRetrieverV4_0) is registered by the 
UMLSKS at startup and made available to the user with the object name of "KSSRetriever". For 
example, the following segment of code will establish a connection to the UMLSKS running on the 
machine named "umlsks.nlm.nih.gov" with the name "KSSRetriever". This object is used 
to issue requests to search the Metathesaurus. The following code snippet also shows how to "create" a 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-7 

KSSRetrieverV4_0 instance and request the return of a concept name described in the 
KSSRetriever interface definition. 

 

To begin using the new features of a new release of the API, users must modify their code to perform 
the cast to the appropriate RMI interface class. 

try  
{ 
 String name = "//umlsks.nlm.nih.gov/KSSRetriever";                     

 
 

 KSSRetrieverV4_2 retriever =  
   (KSSRetrieverV4_2)Naming.lookup(name); 
 
 char[] result = retriever.getConceptName("2001",  
   "C0001175", null, "ENG"); 
 String conceptName = new String(result); 
 
 System.out.println("Concept Name in XML: " + conceptName); 
 
} catch (RemoteException ex) { 
   // handle remote exception 
} catch (NotBoundException ex) { 
   // handle fact that the server is not bound to the given name 
} catch (MalformedURLException ex) { 
   // handle fact that the name was not a properly formatted URL 
} 

3.4 UMLSKS API Functions 
The following interfaces provide a number of API functions giving access to the resources of the 
Metathesaurus, the Semantic Network, and the SPECIALIST Lexicon. The table shown below lists the 
functions and a brief description of the function. More detailed descriptions are available from each of 
the interface class descriptions. 

KSSRetriever Interface 
Function Description 
getCurrentUMLSVersion Returns the UMLS data versions considered to be the 

current release version. 
GgetUMLSVersions Returns the list of UMLS data versions that can be 

accessed by the UMLSKS. 
getSWVersion Returns the version of the UMLSKS Software Release. 
getConceptName Obtains the concept name from the Metathesaurus for a 

given argument concept identifier and returns the data as a 
character buffer containing the concept name in XML 
format. This information is accessed by matching the 
concept unique identifier to the one found in the database. 
If the connection to the UMLS database cannot be 
established, an exception is thrown to the caller. The XML 
data returned from this function call can be interpreted 
using the Object Model class ConceptIdVector.. 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-8 

KSSRetriever Interface 
Function Description 
findCUI Obtains the concept unique identifiers from the 

Metathesaurus for that have the concept name as one of its 
terms and returns the list of CUIs as a character buffer 
containing those concept unique identifiers in XML 
format. This information is accessed by matching the 
concept name to the one found in the database. If the 
connection to the UMLS database cannot be established, a 
null is returned to the caller. The XML data returned from 
this function call can be interpreted using the Object 
Model class ConceptIdVector.. 

getConceptProperties Obtains Metathesaurus information on the terms, 
definitions, semantic type, and context for a given 
argument concept identifier and returns the data as a 
buffer of characters that contains the concept in XML 
form. This information is accessed by matching the 
concept unique identifier to the one found in the database. 
If the connection to the UMLS database cannot be 
established, an exception is thrown to the caller. The XML 
data returned from this function call can be interpreted 
using the Object Model class ConceptVector. 

findConcept Obtains Metathesaurus information on the terms, 
definitions, semantic type, and context for a given 
argument term name and returns the data as a buffer of 
characters that contains the concept in XML form. This is 
equivalent to performing a findCUI function call and 
subsequently feeding those CUIs to a call to 
getConceptProperties. This information is 
accessed by locating concepts whose terms match the 
input term. If the connection to the UMLS database cannot 
be established, an exception is thrown to the caller. The 
XML data returned from this function call can be 
interpreted using the Object Model class 
ConceptVector. 

getBasicConceptProperties Obtains Metathesaurus information on the terms, 
definitions, and semantic type(s) for a given argument 
concept identifier and returns the data as a buffer of 
characters that contains the concept in XML form. This 
information is accessed by matching the concept unique 
identifier to the one found in the database. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML data 
returned from this function call can be interpreted using 
the Object Model class ConceptVector. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-9 

KSSRetriever Interface 
Function Description 
findBasicConcept Obtains Metathesaurus information on the terms, 

definitions, and semantic type(s) for a given argument 
term name and returns the data as a buffer of characters 
that contains the concept in XML form. This is equivalent 
to performing a findCUI function call and subsequently 
feeding those CUIs to a call to 
getBasicConceptProperties. This information is 
accessed by matching the term name using the scheme 
specified to the one found in the database. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML data 
returned from this function call can be interpreted using 
the Object Model class ConceptVector. 

getTerminology Obtains Metathesaurus information on the terms found in 
a set of sources for a given argument concept identifier 
and returns the data as a buffer of characters that contain 
the terms in XML form. This information is accessed by 
matching the concept unique identifier to the one found in 
the database. If the connection to the UMLS database 
cannot be established, an exception is thrown to the caller. 
The XML data returned from this function call can be 
interpreted using the Object Model class TermVector. 

getTerminology Obtains Metathesaurus information on the terms found in 
a particular source for a given argument concept identifier 
and returns the data as a buffer of characters that contain 
the terms in XML form. This information is accessed by 
matching the concept unique identifier to the one found in 
the database. If the connection to the UMLS database 
cannot be established, an exception is thrown to the caller. 
The XML data returned from this function call can be 
interpreted using the Object Model class TermVector. 

getTerms Obtains Metathesaurus information on the terms found in 
a set of sources for a given argument term to be matched 
exactly and returns the data as a buffer of characters that 
contain the terms in XML form. This information is 
accessed by matching the concept unique identifier to the 
one found in the database. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
TermCollection. 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-10 

KSSRetriever Interface 
Function Description 
getDefinition Obtains Metathesaurus information on the definition for a 

given argument concept identifier and returns the data as a 
buffer of characters that contain the definition in XML 
form. This information is accessed by matching the 
concept unique identifier to the one found in the database. 
If the connection to the UMLS database cannot be 
established, an exception is thrown to the caller. The XML 
data returned from this function call can be interpreted 
using the Object Model class DefinitionVector. 

getSemanticType Obtains Metathesaurus information on the semantic types 
for a given concept identifier and returns the data as a 
buffer of characters that contain the semantic type 
information in XML form. This information is accessed 
by matching the concept unique identifier to the one found 
in the database. If the connection to the UMLS database 
cannot be established, an exception is thrown to the caller. 
The XML data returned from this function call can be 
interpreted using the Object Model class 
SemTypeVector.. 

getContext Obtains Metathesaurus context information for a given 
argument concept unique identifier and returns the data as 
a buffer of characters that contain the context in XML 
form. This information is accessed by matching the 
concept unique identifier to the one found in the database. 
If the connection to the UMLS database cannot be 
established, an exception is thrown to the caller. The XML 
data returned from this function call can be interpreted 
using the Object Model class ContextVector. 

getAssocExprs Obtains Metathesaurus associated expressions found in a 
specific source for a given argument concept identifier and 
returns the data as a character buffer containing the 
associated expressions in XML format. This information 
is accessed by matching the concept unique identifier to 
the one found in the database. If the connection to the 
UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class AssociatedExpVector. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-11 

KSSRetriever Interface 
Function Description 
getCooccurrences Obtains Metathesaurus information on the co-occurrences 

found in a given source with the given co-occurrence type 
for a given argument concept identifier and returns the 
data as a character buffer containing the co-occurrences in 
XML format. This information is accessed by matching 
the concept unique identifier to the one found in the 
database. If the connection to the UMLS database cannot 
be established, an exception is thrown to the caller. The 
XML data returned from this function call can be 
interpreted using the Object Model class 
CooccurrenceVector. 

getRelations Obtains Metathesaurus information on the relationships 
for a given argument concept and returns a set of 
characters containing the XML representation for the 
relations. This information is accessed by matching the 
concept unique identifier to the one found in the database. 
If the connection to the UMLS database cannot be 
established, an exception is thrown to the caller. The XML 
data returned from this function call can be interpreted 
using the Object Model class RelationVector. 

getStringAttributes Obtains Metathesaurus information on the term attributes 
found in a particular source with a specific attribute name 
for a given argument concept and returns the data as a 
buffer of characters that contain the attributes in XML 
form. This information is accessed by matching the 
concept unique identifier to the one found in the database. 
If the connection to the UMLS database cannot be 
established, a null is returned to the caller. The XML data 
returned from this function call can be interpreted using 
the Object Model class TermAttributeVector. 

getLocator Obtains the locator information from the Metathesaurus 
and returns the data as a buffer of characters that contain 
the locators in XML form. This information is accessed by 
matching the concept unique identifier to the one found in 
the database. If the connection to the UMLS database 
cannot be established a null is returned to the caller. The 
XML data returned from this function call can be 
interpreted using the Object Model class 
LocatorVector. 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-12 

KSSRetriever Interface 
Function Description 
getMeSHEntries Obtains the MeSH entries for a particular concept unique 

identifier from the Metathesaurus. This information is 
accessed by matching the concept unique identifier to the 
one found in the database. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
MeSHEntryVector. 

getMeSHInfo Obtains the MeSH terms for a particular DUI from the 
Metathesaurus. This information is accessed by matching 
the DUI to the one found in the database. If the connection 
to the UMLS database cannot be established, an exception 
is thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class MeSHInfoVector. 

getRawRecords Obtains the raw records from the Metathesaurus from the 
specified table. This information is accessed by matching 
the DUI to the one found in the database. If the connection 
to the UMLS database cannot be established, an exception 
is thrown to the caller. 

query Executes a query formatted in the UMLSKS XML 
language described in Chapter  4. 

describeSource Returns a triplet describing the argument source including 
its abbreviation, its short name, and its long name. The 
XML data returned from this function call can be 
interpreted using the Object Model class SourceVector.   

listSources Returns a list of triplets that describes each source 
including its abbreviation, its short name, and its long 
name. The XML data returned from this function call can 
be interpreted using the Object Model class SourceVector. 

 

KSSRetrieverV2_1 Interface 
Function Description 
describeCurrentUMLSVersion Returns the UMLS data versions, in XML format, 

considered to be the current release version. The XML 
data returned from this function call can be interpreted 
using the Object Model class UMLSYearVector. 

describeUMLSVersions Returns the list of UMLS data versions, in XML format, 
that can be accessed by the UMLSKS. The XML data 
returned from this function call can be interpreted using 
the Object Model class UMLSYearVector. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-13 

KSSRetrieverV2_1 Interface 
Function Description 
findCUI Obtains the concept unique identifiers from the 

Metathesaurus for that have the concept name as one of its 
terms and returns the list of CUIs as a character buffer 
containing those concept unique identifiers in XML 
format. This information is accessed by matching the 
concept name to the one found in the database. The 
method also takes the suppressibility flag into account 
when determining the data to be returned. If the 
connection to the UMLS database cannot be established, a 
null is returned to the caller. The XML data returned from 
this function call can be interpreted using the Object 
Model class ConceptIdVector.. 

findCUI Obtains the concept unique identifiers from the 
Metathesaurus for concepts belonging to the specified 
semantic type and returns the list of CUIs as a character 
buffer containing those concept unique identifiers in XML 
format. If the connection to the UMLS database cannot be 
established, an exception is thrown to the caller. The XML 
data returned from this function call can be interpreted 
using the Object Model class ConceptIdVector.. 

findCUI Obtains the concept unique identifiers from the 
Metathesaurus for concepts with the specified source id in 
a specific source vocabulary and returns the list of CUIs as 
a character buffer containing those concept unique 
identifiers in XML format. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
ConceptIdVector.. 

getConceptProperties Obtains Metathesaurus information on the terms, 
definitions, semantic type, and context for a given 
argument concept identifier and returns the data as a 
buffer of characters that contains the concept in XML 
form. This information is accessed by matching the 
concept unique identifier to the one found in the database. 
The method also takes the suppressibility flag into account 
when determining the data to be returned. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML data 
returned from this function call can be interpreted using 
the Object Model class ConceptVector. 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-14 

KSSRetrieverV2_1 Interface 
Function Description 
findConcept Obtains Metathesaurus information on the terms, 

definitions, semantic type, and context for a given 
argument term name and returns the data as a buffer of 
characters that contains the concept in XML form. This is 
equivalent to performing a findCUI function call and 
subsequently feeding those CUIs to a call to 
getConceptProperties. This information is 
accessed by locating concepts whose terms match the 
input term. The method also takes the suppressibility flag 
into account when determining the data to be returned. If 
the connection to the UMLS database cannot be 
established, an exception is thrown to the caller. The XML 
data returned from this function call can be interpreted 
using the Object Model class ConceptVector. 

getBasicConceptProperties Obtains Metathesaurus information on the terms, 
definitions, and semantic type(s) for a given argument 
concept identifier and returns the data as a buffer of 
characters that contains the concept in XML form. This 
information is accessed by matching the concept unique 
identifier to the one found in the database. The method 
also takes the suppressibility flag into account when 
determining the data to be returned. If the connection to 
the UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class ConceptVector. 

findBasicConcept Obtains Metathesaurus information on the terms, 
definitions, and semantic type(s) for a given argument 
term name and returns the data as a buffer of characters 
that contains the concept in XML form. This is equivalent 
to performing a findCUI function call and subsequently 
feeding those CUIs to a call to 
getBasicConceptProperties. This information is 
accessed by matching the term name using the scheme 
specified to the one found in the database. The method 
also takes the suppressibility flag into account when 
determining the data to be returned. If the connection to 
the UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class ConceptVector. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-15 

KSSRetrieverV2_1 Interface 
Function Description 
getTerminology Obtains Metathesaurus information on the terms found in 

a set of sources for a given argument concept identifier 
and returns the data as a buffer of characters that contain 
the terms in XML form. This information is accessed by 
matching the concept unique identifier to the one found in 
the database. The method also takes the suppressibility 
flag into account when determining the data to be 
returned. If the connection to the UMLS database cannot 
be established, an exception is thrown to the caller. The 
XML data returned from this function call can be 
interpreted using the Object Model class TermVector. 

getTerminology Obtains Metathesaurus information on the terms found in 
a particular source for a given argument concept identifier 
and returns the data as a buffer of characters that contain 
the terms in XML form. This information is accessed by 
matching the concept unique identifier to the one found in 
the database. The method also takes the suppressibility 
flag into account when determining the data to be 
returned. If the connection to the UMLS database cannot 
be established, an exception is thrown to the caller. The 
XML data returned from this function call can be 
interpreted using the Object Model class TermVector. 

getTerms Obtains Metathesaurus information on the terms found in 
a set of sources for a given argument term to be matched 
exactly and returns the data as a buffer of characters that 
contain the terms in XML form. This information is 
accessed by matching the concept unique identifier to the 
one found in the database. The method also takes the 
suppressibility flag into account when determining the 
data to be returned. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
TermCollection. 

getAssocExprs Obtains Metathesaurus associated expressions found in a 
set of sources for a given argument concept identifier and 
returns the data as a character buffer containing the 
associated expressions in XML format. This information 
is accessed by matching the concept unique identifier to 
the one found in the database. If the connection to the 
UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class AssociatedExpVector. 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-16 

KSSRetrieverV2_1 Interface 
Function Description 
getLocators Obtains the locator information from the Metathesaurus 

and returns the data as a buffer of characters that contain 
the locators in XML form. This information is accessed by 
matching the concept unique identifier to the one found in 
the database. If the connection to the UMLS database 
cannot be established a null is returned to the caller. The 
XML data returned from this function call can be 
interpreted using the Object Model class 
LocatorVector. 

getStringAttributes Obtains Metathesaurus information on the term attributes 
found in a set of sources with a specific attribute name for 
a given argument concept and returns the data as a buffer 
of characters that contain the attributes in XML form. This 
information is accessed by matching the concept unique 
identifier to the one found in the database. If the 
connection to the UMLS database cannot be established, a 
null is returned to the caller. The XML data returned from 
this function call can be interpreted using the Object 
Model class TermAttributeVector. 

findLUI Obtains the LUI/term name pairs that match an input term 
name and returns the data as a buffer of characters that 
contain the pair in XML form. The method also takes the 
suppressibility flag into account when determining the 
data to be returned. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
TermIdVector. 

getTermsForLUI Obtains the LUI/term name pairs that match an input LUI 
and returns the data as a buffer of characters that contains 
the pairs in XML form. The method also takes the 
suppressibility flag into account when determining the 
data to be returned. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
TermIdVector. 

findSUI Obtains the SUI/string pairs that match an input term 
name and returns the data as a buffer of characters that 
contain the pair in XML form. If the connection to the 
UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class StringIdVector. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-17 

KSSRetrieverV2_1 Interface 
Function Description 
getStringsForSUI Obtains the SUI/string pairs that match an input SUI and 

returns the data as a buffer of characters that contains the 
pairs in XML form. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
StringIdVector. 

listStrAttrs Returns a list of pairs that describes each string attribute 
including its attribute abbreviation (a 2-3 character string) 
and a description of the attribute. If the connection to the 
UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class AttrVector. 

listMeSHQuals Returns a list of pairs that describes each MeSH qualifier 
including its code and name. If the connection to the 
UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class MeSHQualifierVector. 

listTermTypes Returns a list of pairs that describes each term type (TTY) 
including its code and description. If the connection to the 
UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class TermTypeVector. 

listCooccurrenceTypes Returns a list of pairs that describes each cooccurrence 
type (COT) including its code and description. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML data 
returned from this function call can be interpreted using 
the Object Model class CooccurrenceTypeVector. 

ListStringTypes Returns a list of pairs that describes each string type (STT) 
including its code and description. If the connection to the 
UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class StringTypeVector. 

listRelationTypes Returns a list of pairs that describes each relation type 
(REL) including its code and description. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML data 
returned from this function call can be interpreted using 
the Object Model class RelationTypeVector. 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-18 

KSSRetrieverV2_1 Interface 
Function Description 
describeUMLSChanges Returns a list of changes that were made to the UMLS for 

all releases, specific releases, or specific CUIs. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML data 
returned from this function call can be interpreted using 
the Object Model class ReleaseDeltaVector. 

listDictionaries Returns a list of dictionary names that can be used as 
arguments to the function suggestSpelling. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML data 
returned from this function call can be interpreted using 
the Object Model class DictionaryVector. 

suggestSpelling Returns a list of spelling suggestions from the specified 
dictionary for the requested term. If the connection to the 
UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class SpellingSuggestionsVector. 

 

KSSRetrieverV3_0 Interface 
Function Description 
findSemType Returns the attributes/properties of the semantic type 

whose name contains the argument string. The results are 
returned in XML format. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
HierSemanticTypeVector. 

getSemTypeProperties Returns the attributes/properties of the requested semantic 
type in XML format. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
HierSemanticTypeVector. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-19 

KSSRetrieverV3_0 Interface 
Function Description 
getSemTypeAncestors Returns the parent tree of the requested semantic type 

name or unique identifier in XML format. Users have the 
option of limiting the amount of data returned by the 
method by specifying whether the complete hierarchical 
tree should be returned. In unexpanded mode, only the 
direct line of ancestors without their children (except the 
one leading to the semantic type requested) is returned. 
The expanded form will create the entire hierarchical tree 
for the requested semantic type, including all ancestors, 
siblings, and cousins. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
HierSemanticTypeVector. 

getSemTypeSiblings Returns the list of siblings of the requested semantic type 
name or unique identifier. Users have the option of 
limiting the amount of data returned by the method by 
specifying whether the complete hierarchical tree should 
be returned. In unexpanded mode, only the unique 
identifiers of the children of the requested semantic type’s 
siblings are returned within the HierSemanticType 
instances. The expanded form will create the entire 
hierarchical tree for each of the siblings of the requested 
semantic type, including all descendants. If the connection 
to the UMLS database cannot be established, an exception 
is thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class HierSemanticTypeVector. 

listSemTypeIds Returns the list of possible semantic type name/unique 
identifier pairs, either of which can be passed as 
arguments to the getAssociativeRelations or the 
getSemTypeProperties methods. If the connection 
to the UMLS database cannot be established, an exception 
is thrown to the caller. The XML returned from this 
method can be interpreted using the Object Model class 
SemNetIdVector. 

findSemRelation Returns the attributes/properties of the semantic relation 
whose name contains the argument string. The results are 
returned in XML format. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
HierSemanticRelationVector. 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-20 

KSSRetrieverV3_0 Interface 
Function Description 
getSemRelationProperties Returns the attributes/properties of the requested semantic 

relation in XML format. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
HierSemanticRelationVector. 

getSemRelationAncestors Returns the parent tree of the requested semantic relation 
name or unique identifier in XML format. Users have the 
option of limiting the amount of data returned for the 
method by specifying whether the complete hierarchical 
tree should be returned. In unexpanded mode, only the 
direct line of ancestors without their children (except the 
one leading to the semantic type requested) is returned. 
The expanded form will create the entire hierarchical tree 
for the requested semantic relations, including all 
ancestors, siblings, and cousins. If the connection to the 
UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class HierSemanticRelationVector. 

listSemRelationIds Returns the list of possible semantic relation name/unique 
identifier pairs, either of which can be passed as 
arguments to the getAssociativeRelations or the 
getSemRelationProperties methods. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML returned 
from this method can be interpreted using the Object 
Model class SemNetIdVector. 

existsAssociativeRelation Returns an indicator as to whether the specified semantic 
relation holds for the given pair of semantic types. The 
indicator is either shown as a direct relationship, as an 
inherited relation indicating that the relationship is 
established between ancestors for the relationship or as a 
non-existent relationship. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML returned from this method can be 
interpreted using the Object Model class 
AssociativeRelExistence. 

getAssociativeRelations Returns the set of triplets where the defined semantic 
relationship holds between two semantic types. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML returned 
from this method can be interpreted using the Object 
Model class AssociativeRelationVector. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-21 

KSSRetrieverV3_0 Interface 
Function Description 
existsHierRelRelation Returns an indicator as to whether the specified 

relationship holds for two semantic relation names. This 
relationship is typically the hierarchical “isa” relationship. 
The indicator is either shown as a direct relationship, as an 
inherited relation indicating that the relationship is 
established between ancestors for the relationship or as a 
non-existent relationship. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML returned from this method can be 
interpreted using the Object Model class 
HierRelRelExistence. 

listSemGroups Returns a list of the valid semantic groups within the 
Semantic Network. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML returned from this method can be 
interpreted using the Object Model class 
SemGroupVector. 

listSemTypes Returns a list of semantic type name/unique identifier 
pairs that belong to the requested semantic group. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML returned 
from this method can be interpreted using the Object 
Model class SemGroupVector. 

getSemNetASCIIRecords Returns the ‘|’ separated list of ASCII relational records 
for the requested semantic network table. If the connection 
to the UMLS database cannot be established, an exception 
is thrown to the caller. 

getSemGroup Returns the name of the semantic group to which the 
given concept unique identifier (CUI) belongs. If the 
connection to the UMLS database cannot be established, 
an exception is thrown to the caller. The XML returned 
from this method can be interpreted using the Object 
Model class SemGroupVector. 

 
KSSRetrieverV4_0 Interface 

Function Description 
findBasicSemType Returns the basic attributes/properties of the semantic type 

whose name contains the argument string. The results are 
returned in XML format. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
HierSemanticTypeVector. 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-22 

KSSRetrieverV4_0 Interface 
Function Description 
findBasicSemRelation Returns the attributes/properties of the semantic relation 

whose name contains the argument string. The results are 
returned in XML format. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
HierSemanticRelationVector. 

getLexicalRecords Returns the lexical records from the SPECIALIST 
Lexicon for the argument term. The results are returned in 
XML format. If the connection to the UMLS database 
cannot be established, an exception is thrown to the caller. 
The XML data returned from this function call can be 
interpreted using the Object Model class 
LexicalRecordVector. 

listMetaTableNames Returns the list of Metathesaurus database table names 
each of which can be passed as an argument to the 
getRawRecords method. The results are returned in 
XML format. If the connection to the UMLS database 
cannot be established, an exception is thrown to the caller. 
The XML data returned from this function call can be 
interpreted using the Object Model class 
TableNameVector. 

listSemNetTableNames Returns the list of Semantic Network database table names 
each of which can be passed as an argument to the 
getSemNetASCIIRecords method. The results are 
returned in XML format. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
TableNameVector. 

 
KSSRetrieverV4_2 Interface 

Function Description 
findTerms Obtains Metathesaurus information on the terms found in 

a set of sources for a given argument term to be matched 
exactly and returns the data as a buffer of characters that 
contain the terms in XML form. This information is 
accessed by matching the concept unique identifier to the 
one found in the database. The method also takes the 
suppressibility flag into account when determining the 
data to be returned. If the connection to the UMLS 
database cannot be established, an exception is thrown to 
the caller. The XML data returned from this function call 
can be interpreted using the Object Model class 
TermCollection. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-23 

KSSRetrieverV4_2 Interface 
Function Description 
describeUMLSChanges Returns a list of changes that were made in a specific 

UMLS release for all releases, specific releases, or 
specific CUIs. If the connection to the UMLS database 
cannot be established, an exception is thrown to the caller. 
The XML data returned from this function call can be 
interpreted using the Object Model class 
ReleaseDeltaVector. 

listDocEntryTypes Returns a list of document entry descriptions which are 
the metadata elements describing the table content 
restrictions and valid values. If the connection to the 
UMLS database cannot be established, an exception is 
thrown to the caller. The XML data returned from this 
function call can be interpreted using the Object Model 
class DocEntryVector. 

3.5 Using the UMLSKS Object Model 
The XML data returned for all of the API functions, with the exception of the query method, may be 
interpreted by the object model. The following sections detail the classes that can interpret the various 
types of XML documents returned from the API functions. 

3.5.1 Properties Required by a UMLSKS Client 
Version 2.0.x requires clients to initialize a set of properties that read disk files on the user's local 
machine to initialize the set of MeSH qualifiers, the set of sources, and the set of string attributes. 
These properties and a description of their purposes are included below. As a convenience, the set of 
properties are defined and delivered with the UMLSKS API download in the 
data/client.properties file. 

Property Name Property Description 
KssStringAttributesFile This property is a full path file name to the 

location of the String Attributes File. This file is 
read by the Attr class (part of the UMLSKS 
Object Model). 

KssMeshQualifierFile This property is a full path file name to the 
location of the MeSH Qualifier description file. 
This file is read by the MeSHQualifier class 
(part of the UMLSKS Object Model). 

KssSourceFile This property is a full path file name to the 
location of the Source descriptions file. This file 
is read by the Source class (part of the UMLSKS 
Object Model). 

 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-24 

As of Version 2.1, each of these data items are now available through a set of APIs: 
listStrAttrs(), listMeSHQuals(), and listSources() respectively. As a result, there are no 
specific client properties that must be set for the API libraries to execute properly. 

3.5.2 Package gov.nih.nlm.kss.models 
This package contains classes that are not specific to any particular model, but hold data from a 
number of general purpose methods. The table below lists the classes and their descriptions for the 
gov.nih.nlm.kss.model package. 

UMLSKS 
Version 

Class Description 

2.1 DictionaryVector Subclass of KSStringVector that holds 
String instances and can interpret the XML 
returned from the listDictionaries 
method of the KSSRetrieverV2_1 class. 

4.0 KSCuiVector Subclass of KSVector that holds instances of 
UMLSKS objects that are linked to a particular 
concept unique identifier and can be written to 
and read from an XML document. 

4.0 KSObject Holds a UMLSKS object that can be written to 
an XML stream and may have associated query 
and UMLS release strings. 

4.0 KSStringVector Subclass of KSVector that holds instances of 
Strings that can be written to and read from an 
XML document. 

4.0 KSVector Subclass of Vector that holds a list of 
UMLSKS objects that can be written to an XML 
stream and may have associated query and 
UMLS release strings. 

2.1 SpellingSuggestionsVector Subclass of KSStringVector that holds 
String instances and can interpret the XML 
returned from the suggestSpelling method 
of the KSSRetrieverV2_1 class. 

4.0 TableNameVector Subclass of KSStringVector that holds 
String instances containing the database table 
names supported by the UMLSKS and can 
interpret the XML returned from the 
listMetaTableNames and 
listSemNetTableNames method of the 
KSSRetrieverV4_0 class. 

2.0 UMLSYearVector Subclass of KSStringVector that holds 
String instances containing the UMLS 
Releases supported by the UMLSKS and can 
interpret the XML returned from the 
describeUMLSVersions method of the 
KSSRetrieverV2_1 class. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-25 

3.5.3 Package gov.nih.nlm.kss.models.meta.concept  
This package contains classes that represent the basic details of a concept. A concept within the 
UMLSKS is defined as having a concept name, a concept unique identifier (CUI), a set of terms and 
variants, a set of definitions, a set of semantic types, and a hierarchical context as related to other 
concepts. The table below lists the classes and their descriptions for the 
gov.nih.nlm.kss.models.meta.concept package. 

UMLSKS 
Version 

Class Description 

2.0 Concept  Container class for all information associated with a concept 
(terms, definitions, semantic types, contexts, associated 
expressions, relations, co-occurrences, string attributes, and 
locators). 

2.0 ConceptVector Subclass of Vector that holds Concept instances and can 
interpret the XML returned returned from the findConcept, 
getConceptProperties, findBasicConcept, and 
getBasicConceptProperties methods of the 
KSSRetriever and KSSRetrieverV2_1 interfaces. 

2.0 ConceptId Container class for the concept unique identifier and concept 
name. 

2.0 ConceptIdVector Subclass of Vector that holds ConceptId instances and 
can interpret the XML returned  from the findCUI and 
getConceptName methods of the KSSRetriever and 
KSSRetrieverV2_1 interfaces. 

2.0 Definition Container class for information about a concept's definition, 
including the string definition and the UMLS source for that 
definition. 

2.0 DefinitionVector Subclass of Vector that holds Definition instances and 
can interpret the XML returned from the getDefinition 
method of the KSSRetriever class. 

2.0 SemType Container class for information about a concept's semantic 
type, including the type unique identifier and the semantic type 
name. 

2.0 SemTypeVector Subclass of Vector that holds SemType instances and can 
interpret the XML returned from the getSemanticType 
method of the KSSRetriever class. 

2.1 StringId Container class for the pairing of an SUI with a string. 
2.1 StringIdVector Subclass of Vector that holds StringId instances and can 

interpret the XML returned from the findSUI and 
getStringsForSUI methods of the 
KSSRetrieverV2_1 class. 

2.1 TermId Container class for the pairing of an LUI with a term name. 
2.1 TermIdVector Subclass of Vector that holds TermId instances and can 

interpret the XML returned from the findLUI and 
getTermsForLUI methods of the KSSRetrieverV2_1 
class. 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-26 

2.0 StringInfo Container class for information about the variants of a term, 
including the string unique identifier, a string type, the string 
name, and the UMLS sources in which the string was found. 

2.0 StringSource Container class for information about the source of a term 
variant, including the UMLS source of the variant, the term's 
type, the string code, and the restriction level. 

2.0 Term Container class for information about a term, including the 
term's lexical unique identifier, the term name, the UMLS 
status of the term, and the term's language. 

2.0 TermVector Subclass of Vector that holds Term instances and can 
interpret the XML returned from the two getTerminology 
methods of the KSSRetriever class. 

2.0 TermCollection Subclass of Vector that holds TermVector instances and 
can interpret the XML returned from getTerms method of 
the KSSRetriever and KSSRetrieverV2_1 class and 
the findTerms method of the KSSRetrieverV4_2 class. 

2.1 TermType Container class for the pairing of a term type and its 
description. 

2.1 TermTypeVector Subclass of Vector that holds TermType instances and can 
interpret the XML returned from the listTermTypes 
method of the KSSRetrieverV2_1 class. 

 

3.5.4 Package gov.nih.nlm.kss.models.meta.context  
This package contains classes that represent the hierarchical context details of a concept. A Context 
within the UMLSKS is defined as a set of relatives of a particular Concept, including ancestors, 
children, and siblings. The table below lists the classes and their descriptions for the 
gov.nih.nlm.kss.models.meta.context package. 

UMLSKS 
Version 

Class Description 

2.0 Context Container class for all information associated with a concept's 
context - a set of StringCxt instances. 

2.0 ContextVector Subclass of Vector that holds Context instances and can 
interpret the XML returned from the getContext method of the 
KSSRetriever class. 

2.0 StringCxt Container class for the relative's string value and the UMLS source 
in which the relative was found. 

2.0 SourceCxt Container class for the information about a particular string 
relative name in a specific UMLS source, including the ancestors, 
children, and siblings found in that source (instances of class 
CxtMember). 

2.0 CxtMember Container class for the information about specific node in the 
hierarchy, including the node name, the concept unique identifier 
for the node, the hierarchical code, the relationship value, and a 
flag indicating whether the node has children. 

 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-27 

3.5.5 Package gov.nih.nlm.kss.models.meta.assocExp  
This package contains classes that represent the associated expressions for a concept. An 
AssociatedExp within the UMLSKS is defined as a relationship expression, the associated 
expression itself, and the source of that association. The table below lists the classes and their 
descriptions for the gov.nih.nlm.kss.models.meta.assocExp package. 

UMLSKS 
Version 

Class Description 

2.0 AssociatedExp Container class for all information for a concept's 
associated expressions. 

2.0 AssociatedExpVector Subclass of Vector that holds AssociatedExp 
instances and can interpret the XML returned from the 
getAssocExprs method of the KSSRetriever class 
or from the overloaded method getAssocExprs in the 
KSSRetrieverV2_1 class. 

 

3.5.6 Package gov.nih.nlm.kss.models.meta.attribute  
This package contains classes that represent the associated expressions for a concept. A 
TermAttribute within the UMLSKS is defined as a set of string attributes with an associated 
lexical identifier for the term. The table below lists the classes and their descriptions for the 
gov.nih.nlm.kss.models.meta.attribute package. 

UMLSKS 
Version 

Class Description 

2.0 TermAttribute Container class for all information for a concept's string 
attributes. 

2.0 TermAttributeVector Subclass of Vector that holds TermAttribute instances 
and can interpret the XML returned from the 
getStringAttributes method of the 
KSSRetriever class or from the overloaded method 
getStringAttributes in the KSSRetrieverV2_1 
class. 

2.0 StringAttribute Container class for information about a particular string, 
including its unique identifier and the string value itself. 

2.0 AttributeContext Container class for details contained in the 
StringAttribute that are grouped according to 
UMLS source. 

2.0 AttributeValue Container class for details of the AttributeContext 
including the attribute name and its value. 

2.0 Attr Container class for details of a string attribute (name and 
description) 

2.0.1 AttrVector Subclass of Vector that holds Attr instances and can 
interpret the XML returned from the listStrAttrs 
method of the KSSRetrieverV2_1 class. 

 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-28 

3.5.7 Package gov.nih.nlm.kss.models.meta.cooccurrence  
This package contains classes that represent the co-occurrences of a concept. A 
CooccurringConcept within the UMLSKS is defined as a pair of concepts that occur together in 
the same “entries” in a particular source. This information includes the CUIs for each of the concepts 
in the co-occurrence and the details of the source in which the co-occurrence was found. The table 
below lists the classes and their descriptions for the 
gov.nih.nlm.kss.models.meta.cooccurrence package. 

UMLSKS 
Version 

Class Description 

2.0 CooccurringConcept Container class for all information about a co-
occurring concept within the Metathesaurus. 

2.0 CooccurrenceVector Subclass of Vector that holds 
CooccurringConcept instances and can 
interpret the XML returned from the 
getCooccurrences method of the 
KSSRetriever class. 

2.0 COContext Container class for all information about the 
context of a co-occurring concept, including the 
Source for the co-occurrence, the type of it, its 
frequency and a list of the qualifier frequencies of 
type QualifierFrequencyVector for the 
co-occurrence. 

2.0 QualifierFrequency Container class for the information about a MeSH 
Qualifier's frequency, including the qualifier's code 
and its name represented by the class 
MeSHQualifier, and the frequency for that 
qualifier within the source.  

2.0 QualifierFrequencyVector Subclass of Vector that holds 
QualifierFrequency instances. 

2.0 MeSHQualifier Container for the representation of a MeSH 
Qualifier including its 2-character code and a 
String qualifier name. 

2.0.1 MeSHQualifierVector Subclass of Vector that holds MeSHQualifier 
instances and can interpret the XML returned from 
the listMeSHQuals method of the 
KSSRetrieverV2_1 class. 

2.1 CooccurrenceType Container for the representation of a cooccurrence 
type including its 2-character code and a String 
cooccurrence type description. 

2.1 CooccurrenceTypeVector Subclass of Vector that holds 
CooccurrenceType instances and can interpret 
the XML returned from the 
listCooccurrenceTypes method of the 
KSSRetrieverV2_1 class. 

 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-29 

3.5.8 Package gov.nih.nlm.kss.models.meta.locator  
This package contains classes that represent the locators of a concept. A Locator within the 
UMLSKS is defined as a set of sources in which the Metathesaurus concept was detected. The table 
below lists the classes and their descriptions for the 
gov.nih.nlm.kss.models.meta.locator package. 

UMLSKS 
Version 

Class Description 

2.0 Locator Container class for all information for a concept's locator 
information.. 

2.0 LocatorVector Subclass of Vector that holds Locator instances and can 
interpret the XML returned from the getLocator method of the 
KSSRetriever class or from the getLocators method of the 
KSSRetrieverV2_1 class. 

3.5.9 Package gov.nih.nlm.kss.models.meta.meshentry  
This package contains classes that represent the MeSH Entries of a concept and contains classes that 
describe the Medical Subject Heading information about a specific DUI. A MeSHEntry within the 
UMLSKS is defined as the set of term characteristics within MeSH. The MeSHInfo class contains 
the information associated with a given DUI. The table below lists the classes and their descriptions 
for the gov.nih.nlm.kss.models.meta.meshentry package. 

UMLSKS 
Version 

Class Description 

2.0 MeSHEntry Container class for all information for the MeSH Entries for a 
term. 

2.0 MeSHEntryVector Subclass of Vector that holds MeSHEntry instances and can 
interpret the XML returned from the getMeSHEntries method 
of the KSSRetriever class. 

2.0 MeSHInfo Container class for all information associated with a specific DUI. 
2.0 MeSHInfoVector Subclass of Vector that holds MeSHInfo instances and can 

interpret the XML returned from the getMeSHInfo method of 
the KSSRetriever class. 

3.5.10 Package gov.nih.nlm.kss.models.meta.relation  
This package contains classes that represent the relations of a concept. A Relation within the 
UMLSKS is defined as a defined relationship between two concepts and documents the concept 
identifiers for the two, the relationship between them and other relational information. The table below 
lists the classes and their descriptions for the gov.nih.nlm.kss.models.meta.relation 
package. 

UMLSKS 
Version 

Class Description 

2.0 Relation Container class for all information for a concept's relations. 
2.0 RelationVector Subclass of Vector that holds Relation instances and 

can interpret the XML returned from the getRelations 
method of the KSSRetriever class. 

2.1 RelationType Container class for the pairing of a relation type and its 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-30 

UMLSKS 
Version 

Class Description 

description. 
2.1 RelationTypeVector Subclass of Vector that holds RelationType instances 

and can interpret the XML returned from the 
listRelationTypes method of the 
KSSRetrieverV2_1 class. 

3.5.11 Package gov.nih.nlm.kss.models.meta.source 
This package contains classes that represent a UMLS Source. A Source within the UMLSKS is 
defined as a source abbreviation, a long name for the source, and a short name for that source. The 
table below lists the classes and their descriptions for the 
gov.nih.nlm.kss.models.meta.source package. 

UMLSKS 
Version 

Class Description 

2.0 Source Container class for all information for a UMLS Source. 
2.0 SourceVector Subclass of Vector that holds Source instances and can interpret 

the XML returned from the listSources method of the 
KSSRetriever class and from the overloaded listSources 
method of the KSSRetrieverV2_1 class. 

3.5.12 Package gov.nih.nlm.kss.models.meta.deltas 
This package contains classes that represent the changes made to the UMLS for the various UMLS 
delivery releases. The table below lists the classes and their descriptions for the 
gov.nih.nlm.kss.models.meta.deltas package. 

UMLSKS 
Version 

Class Description 

2.1 ReleaseDeltaVector Subclass of Vector that holds ReleaseDelta instances 
and can interpret the XML returned from the 
describeUMLSChanges method of the 
KSSRetrieverV2_1 and KSSRetrieverV4_2  classes.

2.1 ReleaseDelta Container class for information about a specific UMLS 
release’s changes (i.e. contains a list of ConceptDelta 
instances). 

2.1 ConceptDelta Container class for a specific concept changes made for a 
particular release. The information includes the CUI in 
question, a flag indicating the change made (either merged 
into another CUI or deleted altogether), and the CUI for the 
merger, if applicable. 

3.5.13 Package gov.nih.nlm.kss.models.meta 
This package contains classes that represent general purpose information about the Metathesaurus, 
including table entry descriptions that detail the valid values and ranges for the fields in the object 
model instances. The table below lists the classes and their descriptions for the 
gov.nih.nlm.kss.models.meta package. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-31 

UMLSKS 
Version 

Class Description 

4.2 DocEntryVector Subclass of Vector that holds DocEntryTypeVector 
instances and can interpret the XML returned from the 
listDocEntryTypes method of the 
KSSRetrieverV4_2  class. 

4.2 DocEntryTypeVector Subclass of Vector that holds DocEntryType instances. 
4.2 DocEntryType Container class for the metadata descriptions. The 

information includes the document entry type, the document 
entry subtype, the value, and a description. For example, the 
LAT entry found in the term information can have values as 
described in the entry where the document entry type is 
‘LAT’. 

3.5.14 Package gov.nih.nlm.kss.models.sem.units 
This package contains classes that represent the Semantic Network components (semantic type and 
semantic relation). The table below lists the classes and their descriptions for the 
gov.nih.nlm.kss.models.sem.units package. 

UMLSKS 
Version 

Class Description 

3.0 HierSemanticRelationVector Subclass of Vector that holds 
HierSemanticRelation instances and can 
interpret the XML returned from the 
findSemRelation, 
getSemRelationProperties, and 
getSemRelationAncestors methods of 
the KSSRetrieverV3_0 class. 

3.0 HierSemanticRelation Container class for information about a semantic 
relation within the Semantic Network. 

3.0 HierSemanticTypeVector Subclass of Vector that holds 
HierSemanticType instances and can 
interpret the XML returned from the 
findSemType,  
getSemTypeProperties, 
getSemTypeAncestors, and 
getSemTypeSiblings methods of the 
KSSRetrieverV3_0 class and 
findBasicSemType and 
getBasicSemTypeProperties methods 
of the KSSRetrieverV4_0 class. 

3.0 HierSemanticType Container class for information about a semantic 
type within the Semantic Network. 

3.0 SemGroupVector Subclass of Vector that holds SemGroup 
instances and can interpret the XML returned 
from the listSemTypes and 
listSemGroups methods of the 
KSSRetrieverV3_0 class. 



Chapter 3 Building Applications with the UMLSKS API  UMLSKS Developer’s Guide 

3-32 

3.0 SemGroup Container class for information about a semantic 
group defined within the Semantic Network. 

3.0 SemNetIdVector Subclass of Vector that holds SemNetId 
instances and can interpret the XML returned 
from the listSemTypeIds and 
listSemRelationIds methods of the 
KSSRetrieverV3_0 class. 

3.0 SemNetId Container class for information about a semantic 
type or relation including its name, unique 
identifier, and type or relation indicator within 
the Semantic Network. 

3.5.15 Package gov.nih.nlm.kss.models.sem.rels 
This package contains classes that represent the relationships defined within the Semantic Network. 
These include associative relationships between two semantic types and hierarchical relationships 
between two semantic relations. The table below lists the classes and their descriptions for the 
gov.nih.nlm.kss.models.sem.rels package. 

UMLSKS 
Version 

Class Description 

3.0 AssociativeRelationVector Subclass of Vector that holds 
AssociativeRelation instances and can 
interpret the XML returned from the 
getAssociativeRelations method of 
the KSSRetrieverV3_0 class and the 
getBasicAssociativeRelations 
method of the KSSRetrieverV4_0 class. 

3.0 AssociativeRelation Container class for information about the 
relationship formed between two semantic types 
within the Semantic Network. 

3.0 AssociativeRelExistence Container class for information describing 
whether a particular associative relation between 
two semantic types exists. This class can 
interpret the XML returned from the 
existsAssociativeRelation method of 
the KSSRetrieverV3_0 class. 

3.0 HierRelRelExistence Container class for information describing 
whether a particular hierarchical relationship 
between two semantic relations exists. This class 
can interpret the XML returned from the 
existsHierRelRelation method of the 
KSSRetrieverV3_0 class. 

3.5.16 Package gov.nih.nlm.kss.models.lex 
This package contains classes that represent the SPECIALIST Lexicon lexical records. The table 
below lists the classes and their descriptions for the gov.nih.nlm.kss.models.lex package. 



UMLSKS Developer’s Guide Chapter 3 Building Applications with the UMLSKS API  

3-33 

UMLSKS 
Version 

Class Description 

4.0 LexicalRecordVector Subclass of Vector that holds LexicalRecord 
instances and can interpret the XML returned from the 
getLexicalRecords method of the 
KSSRetrieverV4_0 class. 

4.0 LexicalRecord Container class for information about the lexical records 
for a given term. This class subclasses the 
gov.nih.nlm.nls.lexCheck.Lib.LexRecord 
class. 

 





UMLSKS Developer’s Guide Chapter 4 – Using the XML Query Facility 

4-1 

4 Using the XML Query Facility 
The UMLSKS API provides an extensive query facility for developers expert in the layout of the 
UMLS data within the UMLSKS and its corresponding database tables. The facility utilizes the power 
of the eXtensible Markup Language (XML) to request the return of any data found within the UMLS 
data set. A special language was developed for the UMLSKS to allow users to develop an XML query 
that may be issued to the UMLSKS for processing. This chapter describes this process. 

4.1 Retrieving Metathesaurus and Semantic Network Data using an XML Query 
Retrieving Metathesaurus data using the XML query feature of the UMLSKS requires an 
understanding of the UMLS structures, the UMLSKS internal database design and the theory behind 
querying a relational database. The returned XML document from the query uses Oracle's XML 
generation facility to generate the XML, so the XML will not look like the XML generated by the 
other UMLSKS API methods. The XML tags for the columns will be the names as they appear in 
Oracle (i.e. the field names shown in Section  4.3 will be the tags for the generated XML). In addition, 
the XML returned using this scheme of data retrieval cannot be used in conjunction with the object 
model classes. 

Developers create a string containing an XML document that is then sent via the query method of the 
KSSRetriever class. This query must be of the form described in Section  4.2. The return value to 
the method is an XML document that may be parsed with a standard XML parser and its details may 
be extracted. 

4.2 Structure of an XML Query 
A UMLSKS query is an XML document that describes a request for some subset of data from the 
Metathesaurus. The default namespace is used for all elements in the XML definition. The elements 
within a query document are described below using regular expression syntax. Sample queries are also 
provided in Section  0. 

Formatting of the regular expressions describing the XML grammar following these conventions: 

• Items in bold are ASCII characters that should appear exactly as shown in bold. 
• The ‘|’ character indicates an ‘or’ relationship. For example, the fieldSetGroup item can be 

either a fieldSet followed by a fieldSetGroup, or a single fieldSet 
• ε denotes an empty value (i.e. may not be present) 
 
 
 

 
 

query −> <query version=1.0> release rowset row distinct fields  
constraints ordering </query> 
 

release −> <release/>string<release/>  | ε 
rowset  −> <rowset>string</rowset> 
row  −> <row>string</row> 
distinct −> <distinct/> | ε 
fields −> <fields> allFields </fields> | <fields> fieldSetGroup </fields> 
allFields −> <all> tableSpec </all> 
tableSpec -> tableNameSpec tableSpec | tableNameSpec 



Chapter 4 – Using the XML Query Facility UMLSKS Developer’s Guide 

4-2 

fieldSetGroup −> fieldSet fieldSetGroup | fieldSet 
fieldSet −> <fieldSet> tableNameSpec fieldPart </fieldSet> 
tableNameSpec −> <table> tableName </table> 
tableName −> mrcon | mrso | mrdef | mrsty |  
    mrrel | mratx | mrcxt | mrcoc | mrsat | mrlo | 
    mrxns_eng | mrxnw_eng 
fieldPart −> <fieldNames> fieldNameSpec </fieldNames> fieldPart |  

  <fieldNames> fieldNameSpec </fieldNames> 
 
constraints −> <constraints> constraintList </constraints> | ε 
constraintList −> relation constraintList  |  

constraint constraintList | relation | constraint 
relation −>  <relation> relation_op constraintList </relation> 
relation_op −>  <operator> op </operator> 
op −>  AND | OR | NOT 
 
constraint −> <constraint> const </constraint> 
const −> lhs | lhs const_op rhs 
lhs −> <lhs> fieldList </lhs>  | <lhs> field <lhs> 
fieldList −> <fieldList> fieldSpec </fieldList> 
fieldSpec −> fieldNameSpec fieldSpec | fieldNameSpec 
fieldNameSpec −> <name> fieldNameSpec </name> 
field −> <field> tableName.fieldName </field> 
fieldName −> Field name for the appropriate table as described in the following sections 
const_op −>  <op> operator </op> | normStr | normWord | word | like 
operator  −>  oneof | noneof | = | >= | <= | > | < | != 
normStr −>  <normStr> string </normStr> 
normWord −>  <normWord> string </normWord> 
word −>  <word> string </word> 
like −>  <like> string </like> 
rhs −>  <rhs> query </rhs> | <rhs> stringList </rhs> |  

      <rhs> stringSpec </rhs> | <rhs> field </rhs> 
stringList −>  <stringList> strings </stringList> 
strings −>  stringVal strings | stringVal 
stringVal −>  <name> string </name> 
stringSpec −>  <string> string</string> 
string −>  set of characters that is readable by an XML parser (i.e. has the < described as &lt; and the ‘>’ described 

as &gt;) 
 
ordering −>  <orderBy> fieldSpec</orderBy> 

4.3 Metathesaurus and Semantic Network Table Contents 
The following sections describe the tables and their field names that may be used as the <tableName> 
and <fieldName> values described in the grammar. 

4.3.1 Table ‘mrcon’ 
The ‘mrcon’ table for UMLS releases prior to 2004AA contains the following fields: 

Field Name Description 
CUI Concept Unique Identifier 
LAT Language 
TS Term Status 
LUI Lexical Unique Identifier 



UMLSKS Developer’s Guide Chapter 4 – Using the XML Query Facility 

4-3 

STT String Type 
SUI String Unique Identifier 
STR String Value for the concept 
LRL Least Restriction Level 
STR2 Normalized version of the concept’s string value in all uppercase 

4.3.2 Table ‘mrso’ 
The ‘mrso’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
CUI Concept Unique Identifier 
LUI Lexical Unique Identifier 
SUI String Unique Identifier 
SAB Source Abbreviation 
TTY Term Type 
SCD Unique identifier or code for string in that source 
SRL Source Restriction Level 

4.3.3 Table ‘mrdef’ 
The ‘mrdef’ table contains the following fields that may be specified as  

Field Name Description 
CUI Concept Unique Identifier 
SAB Source abbreviation 
DEF Definition 

4.3.4 Table ‘mrsty’ 
The ‘mrsty’ table contains the following fields that may be specified as  

Field Name Description 
CUI Concept Unique Identifier 
TUI Unique Identifier of the Semantic type 
STY Semantic type 

4.3.5 Table ‘mrrel’ 
The ‘mrrel’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
CUI1 Concept Unique Identifier 1 
REL Relationship of second concept to the first 
CUI2 Concept Unique Identifier 2 
RELA Relationship attribute 
SAB Abbreviation of the source of the relationship 
SL Source of relationship labels 
MG Machine-generated and unverified indicator 

 



Chapter 4 – Using the XML Query Facility UMLSKS Developer’s Guide 

4-4 

The ‘mrrel’ table for UMLS release 2004AA and later releases contains the following fields that may 
be specified as  

Field Name Description 
CUI1 Concept Unique Identifier 1 
AUI1 Atomic unique identifier 1 
STYPE1 Source asserted type for identifier 1 
REL Relationship of second concept to the first 
CUI2 Concept Unique Identifier 2 
AUI2 Atomic unique identifier 2 
STYPE2 Source asserted type for identifier 2 
RELA Relationship attribute 
RUI Relationship unique identifier 
SRUI Source attributed relationship identifier 
SAB Abbreviation of the source of the relationship 
SL Source of relationship labels 
RG Relationship Group 
DIR Source asserted directionality flag 
SUPPRESS Suppressible flag 
CVF Content view flag 

4.3.6 Table ‘mratx’ 
The ‘mratx’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
CUI Concept Unique Identifier 
SAB Abbreviation of source of terms in expression 
REL Relationship of meaning of expression to main concept 
ATX Associated expression 

4.3.7 Table ‘mrcxt’ 
The ‘mrcxt’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
CUI Concept Unique Identifier 
SUI String Unique Identifier 
SAB Source abbreviation 
SCD Unique identifier or code for string in that source 
CXN The context number (to distinguish multiple contexts in 

the same source with the same SUI) 
CXL Context member label (i.e. ANC for ancestor of this 

concept, CCP for concept, SIB for sibling of this concept, 
CHD for child of this concept). 

RNK For rows with a CXL value of ANC, the rank of the 
ancestors (e.g. a value of 1 denotes the most remote 
ancestor in the hierarchy) 

CXS String for context member 



UMLSKS Developer’s Guide Chapter 4 – Using the XML Query Facility 

4-5 

CUI2 Unique concept identifier of context member 
HCD Hierarchical number or code of context member in this 

source 
RELA Relationship attribute providing further categorization of 

the CXL 
XC A plus (+) sign indicates that the CUI2 for this row has 

children in this context 
 

The ‘mrcxt’ table for UMLS release 2004AA and later releases contains the following fields that may 
be specified as  

Field Name Description 
CUI Concept Unique Identifier 
SUI String Unique Identifier 
AUI1 Atomic unique identifier for this atom 
SAB Source abbreviation 
CODE Unique identifier or code for string in that source 
CXN The context number (to distinguish multiple contexts in 

the same source with the same SUI) 
CXL Context member label (i.e. ANC for ancestor of this 

concept, CCP for concept, SIB for sibling of this concept, 
CHD for child of this concept). 

RNK For rows with a CXL value of ANC, the rank of the 
ancestors (e.g. a value of 1 denotes the most remote 
ancestor in the hierarchy) 

CXS String for context member 
CUI2 Unique concept identifier of context member 
AUI2 Atomic unique identifier for second atom 
HCD Hierarchical number or code of context member in this 

source 
RELA Relationship attribute providing further categorization of 

the CXL 
XC A plus (+) sign indicates that the CUI2 for this row has 

children in this context 
CVF Content view flag 

4.3.8 Table ‘mrcoc’ 
The ‘mrcoc’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
CUI1 Concept Unique Identifier 1 
CUI2 Concept Unique Identifier 2 
SOC Abbreviation of the source of the co-occurrence 

information 
COT Co-occurrence type 
COF Co-occurrence frequency 
COA Attributes of the co-occurrence 



Chapter 4 – Using the XML Query Facility UMLSKS Developer’s Guide 

4-6 

 

The ‘mrcoc’ table for UMLS release 2004AA and later releases contains the following fields that may 
be specified as  

Field Name Description 
CUI1 Concept Unique Identifier 1 
AUI1 Atomic unique identifier 2 
CUI2 Concept Unique Identifier 2 
AUI2 Atomic unique identifier 2 
SAB Abbreviation of the source of the co-occurrence 

information 
COT Co-occurrence type 
COF Co-occurrence frequency 
COA Attributes of the co-occurrence 
CVF Content View Flag 

4.3.9 Table ‘mrsat’ 
The ‘mrsat’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
CUI Concept Unique Identifier 
LUI Term Unique Identifier 
SUI String Unique Identifier 
SCD Unique identifier or code for entry in the source of the 

attribute 
ATN Attribute name 
SAB Abbreviation of the source of the attribute 
ATV Attribute value 

 

The ‘mrsat’ table for UMLS release 2004AA and later releases contains the following fields that may 
be specified as  

Field Name Description 
CUI Concept Unique Identifier 
LUI Term Unique Identifier 
SUI String Unique Identifier 
UI Atom or Relationship identifier 
STYPE Source asserted type for the identifier in CODE 
CODE Unique identifier or code for entry in the source of the 

attribute 
ATUI Attribute unique identifier 
SATUI Source asserted attribute identifier 
ATN Attribute name 
SAB Abbreviation of the source of the attribute 
ATV Attribute value 
SUPPRESS Suppressible flag 
CVF Content View Flag 



UMLSKS Developer’s Guide Chapter 4 – Using the XML Query Facility 

4-7 

4.3.10 Table ‘mrlo’ 
The ‘mrlo’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
CUI Concept Unique Identifier 
ISN Name of information source or database in which concept 

appears 
FR Frequency count of number of occurrences of concept in 

the information source (optional) 
UN Meaning of the frequency  
SUI Unique identifier of the string if name used in information 

source appears in MRCON 
SNA Actual name that occurs in the information source if not 

otherwise present in the Metathesaurus 
SOUI Unique identifier of record in which the concept appears 

in the source 
 

The ‘mrlo’ table for UMLS release 2004AA and later releases contains the following fields that may 
be specified as  

Field Name Description 
CUI Concept Unique Identifier 
AUI Atomic unique identifier 
ISN Name of information source or database in which concept 

appears 
FR Frequency count of number of occurrences of concept in 

the information source (optional) 
UN Meaning of the frequency  
SUI Unique identifier of the string if name used in information 

source appears in MRCON 
SNA Actual name that occurs in the information source if not 

otherwise present in the Metathesaurus 
SOUI Unique identifier of record in which the concept appears 

in the source 
CVF Content View Flag 

4.3.11 Table ‘mrxns_eng’ 
The ‘mrxns_eng’ table contains the following fields that may be specified as  

Field Name Description 
CUI Concept Unique Identifier 
LUI Lexical Unique Identifier 
SUI Unique identifier of the string if name used in information 

source appears in MRCON 
LAT Language 
NSTR Normalized string value 



Chapter 4 – Using the XML Query Facility UMLSKS Developer’s Guide 

4-8 

NSTR2 Normalized string value with spaces removed and all 
letters capitalized 

4.3.12 Table ‘mrxnw_eng’ 
The ‘mrxnw_eng’ table contains the following fields that may be specified as  

Field Name Description 
CUI Concept Unique Identifier 
LUI Lexical Unique Identifier 
SUI Unique identifier of the string if name used in information 

source appears in MRCON 
LAT Language 
NWD Normalized word value 

4.3.13 Table ‘mrxw_eng’ 
The ‘mrxw_eng’ table contains the following fields that may be specified as  

Field Name Description 
CUI Concept Unique Identifier 
LUI Lexical Unique Identifier 
SUI Unique identifier of the string if name used in information 

source appears in MRCON 
LAT Language 
WD Normalized word value 

4.3.14 Table ‘mrcui’ 
The ‘mrcui’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
CUI Concept Unique Identifier 
YEAR UMLS Release 
FLAG Indicator for whether the concept was deleted (value of 

DEL) or merged (value of SY) 
MCUI When the flag indicates merge, this contains the CUI into 

which the CUI was merged 
 

The ‘mrcui’ table for UMLS release 2004AA and later releases contains the following fields that may 
be specified as  

Field Name Description 
CUI Concept Unique Identifier 
YEAR UMLS Release 
REL Relationship 
RELA Relationship attribute 
MAPREASON Reason for mapping 
CUI2 Unique identifier for the second concept 
MAPIN Indicates presence in subset 



UMLSKS Developer’s Guide Chapter 4 – Using the XML Query Facility 

4-9 

4.3.15 Table ‘mrsab’ 
The ‘mrsab’ table contains the following fields that may be specified as  

Field Name Description 
VCUI CUI for the versioned source 
RCUI CUI for the root source 
SAB Abbreviation of the root source 
STR Official name for the source 
STR2 Abbreviation of the versioned source 
SF Source family 
VER Version indicator 
MSTART Date at which the source first appeared in the 

Metathesaurus 
MEND Date at which this source disappeared from the 

Metathesaurus 
IMETA Metathesaurus release in which this source first appeared 
RMETA Metathesaurus release in which this source disappeared 
SLC Contact information for obtaining the source’s license 
SCC Contact information for information about the source’s 

content 
SRL Source restriction level 
TFR Number of terms for this source in MRCON/MRSO 
CFR Number of CUIs associated with this source 
CXTY The type of context for this source from the UMLS 

documentation 
TTYL Term-type list from the source 
ATNL Attribute name list from the source 
LAT Language indicator 
CENC Character encoding value 
CURVER Current Version Flag (Y/N) 
SABIN Source in Metamorphosys subsystem flag (Y/N) 
SSN Field added in 2004AA and later UMLS releases that 

indicates the source’s short name 

4.3.16 Table ‘mshqual’ 
The ‘mshqual’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
CODE MeSH Qualifier Code (2-3 characters) 
NAME MeSH Qualifier description 

4.3.17 Table ‘strattr’ 
The ‘strattr’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
ATN Attribute name 
ATEN Attribute description 



Chapter 4 – Using the XML Query Facility UMLSKS Developer’s Guide 

4-10 

4.3.18 Table ‘ttys’ 
The ‘ttys’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
TTY  Term type 
STR Description of the term type 

4.3.19 Table ‘cots’ 
The ‘cots’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
COT Cooccurrence type (2-3 characters) 
STR Cooccurrence type description 

4.3.20 Table ‘stts’ 
The ‘stts’ table for UMLS releases prior to 2004AA contains the following fields that may be specified 
as  

Field Name Description 
STT String type 
STR Description of the string type 

4.3.21 Table ‘rels’ 
The ‘rels’ table for UMLS releases prior to 2004AA contains the following fields that may be 
specified as  

Field Name Description 
REL  Relation type 
STR Description of the relation type 

4.3.22 Table ‘srdef’ 
The ‘srdef’ table contains the following fields that may be specified as  

Field Name Description 
RT  Record type (STY=Semantic Type or RL=Relation) 
UI Unique identifier of the semantic type or semantic relation 
NAME Name of the semantic type or semantic relation 
TN Tree number of the semantic type or semantic relation 
DEF Definition of the semantic type or relation 
EX Examples of Metathesaurus concepts with this semantic 

type (STY records only) 
UN Usage note for semantic type assignment (STY records 

only) 
NH Semantic type and its descendants allow the non-human 

flag (STY records only) 
ABBREV Abbreviation of the semantic relation name (RL records 

only) 



UMLSKS Developer’s Guide Chapter 4 – Using the XML Query Facility 

4-11 

RIN Inverse of the semantic relation (RL records only) 

4.3.23 Table ‘srgrp’ 
The ‘srgrp’ table contains the following fields that may be specified as  

Field Name Description 
ABBREV Abbreviation for the semantic group 
GRP Group name 
STNAME Semantic type name belonging to the semantic group 
STUI Unique identifier of the semantic type belonging to the 

semantic group 

4.3.24 Table ‘srstr’ 
The ‘srstr’ table contains the following fields that may be specified as  

Field Name Description 
SRLEFT Argument 1 (name of a semantic type or semantic 

relation) 
REL Relation (“isa” or the name of a non-hierarchical semantic 

relation) 
SRRIGHT Argument 2 (name of a semantic type or semantic 

relation); if this field is blank this means that the semantic 
type or semantic relation is one of the top nodes of the 
Network. 

LS Link Status (D = Defined for the arguments and its 
children; B = Blocked; DNI = Defined but Not Inherited 
by the children of the arguments) 
The relations expressed in this table are binary relations 
and the arguments are ordered pairs. The relations are 
stated only for the top-most node of the “isa” hierarchy of 
the semantic types to which they may apply. 

4.3.25 Table ‘srstre1’ 
The ‘srstre1’ table contains the following fields that may be specified as  

Field Name Description 
LTUI Argument 1 semantic type unique identifier 
REL Semantic relation unique identifier 
RTUI Argument 2 semantic type unique identifier 

4.3.26 Table ‘srstre2’ 
The ‘srstre2’ table contains the following fields that may be specified as  

Field Name Description 
SRLEFT Argument 1 semantic type name 
REL Semantic relation name 
SRRIGHT Argument 2 semantic type name 



Chapter 4 – Using the XML Query Facility UMLSKS Developer’s Guide 

4-12 

4.3.27 Table ‘mrconso’ 
The ‘mrconso’ table for UMLS release 2004AA and later contains the following fields that may be 
specified as  

Field Name Description 
CUI Concept Unique Identifier 
LAT Language 
TS Term Status 
LUI Lexical Unique Identifier 
STT String Type 
SUI String Unique Identifier 
ISPREF Indicates preferred term for the language indicated for the row 
AUI Atomic unique identifier 
SAUI Source asserted unique identifier 
SCUI  
SDUI  
SAB Source abbreviation 
TTY Term type 
CODE Unique identifier or code for the string in the source 
STR String Value for the concept 
SRL Least Restriction Level 
SUPPRESS Suppressible flag 
CVF Content View Flag 
STR2 Normalized version of the concept’s string value in all uppercase 

4.3.28 Table ‘mrdoc’ 
The ‘mrdoc’ table contains the following fields that may be specified as  

Field Name Description 
TYPE Type of the meta data 
MKEY Key to the type of meta data 
SUBKEY Key to the abbreviation for the entry of the MKEY type 
VALUE Value for the SUBKEY 

4.3.29 Table ‘mrhier’ 
The ‘mrhier’ table contains the following fields that may be specified as  

Field Name Description 
CUI Concept unique identifier 
AUI Atomic unique identifier 
CXN  
PAUI  
SAB  
RELA  
PTR  
HCD  
CVF Content view flag 



UMLSKS Developer’s Guide Chapter 4 – Using the XML Query Facility 

4-13 

4.3.30 Table ‘mrhist’ 
The ‘mrhier’ table contains the following fields that may be specified as  

Field Name Description 
CUI Concept unique identifier 
UI  
SAB  
VER  
CHANGETYPE  
CHANGEKEY  
CHANGEVAL  
REASON  

4.3.31 Table ‘mrmap’ 
The ‘mrmap’ table contains the following fields that may be specified as  

Field Name Description 
MAPSETCUI  
MAPSETSAB  
MAPSUBSETID  
MAPRANK  
FROMID  
FROMSID  
FROMEXPR  
FROMTYPE  
FROMRULE  
FROMRES  
REL  
RELA  
TOID  
TOSID  
TOEXPR  
TOTYPE  
TORULE  
TORES  
MAPRULE  
MAPTYPE  
MAPATN  
MAPATV  
CVF Content View Flag 

4.4 XML Query Example 
A number of sample queries are provided with the API delivery, including queries for all of the 
convenience API functions describe previously. The XML query that returns the details of a concept, 
similar to the getConcept API method, is described here. 

The following example query requests the return of all the fields for UMLS release 2003AC in the 
“mrcon”, “mrso”, “mrsty”, and “mrcxt” tables where the concept unique identifier is ‘C0024109’. 



Chapter 4 – Using the XML Query Facility UMLSKS Developer’s Guide 

4-14 

 
<?xml version="1.0"?> 
<query xmlns="http://umlsks4.nlm.nih.gov" 

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance" 
version="1.0"> 

 
 <release>2003AC</release> 
 <distinct/> 
 
 <fields> 
  <all> 
   <table>mrcon</table> 
   <table>mrso</table> 
   <table>mrsty</table> 
   <table>mrcxt</table> 
  </all> 
 </fields> 
 
 <constraints> 
  <relation> 
   <operator>AND</operator> 
   <constraint> 
    <lhs><field>mrcon.cui</field></lhs> 
    <op>=</op> 
    <rhs><string>C0024109</string></rhs> 
   </constraint> 
   <constraint> 
    <lhs><field>mrcon.ts</field></lhs> 
    <op>!=</op> 
    <rhs><string>s</string></rhs> 
   </constraint> 
   <constraint> 
    <lhs><field>mrcon.cui</field></lhs> 
    <op>=</op> 
    <rhs><field>mrso.cui</field></rhs> 
   </constraint> 
   <constraint> 
    <lhs><field>mrcon.lui</field></lhs> 
    <op>=</op> 
    <rhs><field>mrso.lui</field></rhs> 
   </constraint> 
   <constraint> 
    <lhs><field>mrcon.sui</field></lhs> 
    <op>=</op> 
    <rhs><field>mrso.sui</field></rhs> 
   </constraint> 
   <constraint> 
    <lhs><field>mrcon.cui</field></lhs> 
    <op>=</op> 
    <rhs><field>mrsty.cui</field></rhs> 
   </constraint> 
   <constraint> 
    <lhs><field>mrcon.cui</field></lhs> 
    <op>=</op> 
    <rhs><field>mrcxt.cui</field></rhs> 
   </constraint> 
  </relation> 
 </constraints> 
 



UMLSKS Developer’s Guide Chapter 4 – Using the XML Query Facility 

4-15 

 <orderBy> 
  <name>mrcon.cui</name> 
  <name>mrcon.sui</name> 
  <name>mrso.sab</name> 
  <name>mrcxt.scd</name> 
 <name>mrcxt.cxn</name> 
 <name>mrcxt.rnk</name> 

</orderBy> 
</query> 





UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-1 

5 Using the UMLSKS Socket Server 
The UMLSKS provides an interface to client programs through a TCP/IP socket. Clients using this 
interface send XML requests through the socket to the UMLSKS server, which in turn executes the 
request and returns the result of the query in its XML form. This chapter describes the acceptable 
XML commands that may be issued through the socket server and details the configuration of a client 
using the socket server. 

5.1 Connecting to the UMLSKS Socket Server 
The UMLSKS Socket Server is a TCP/IP server that is running on the machine 
'umlsks.nlm.nih.gov' at port 8042. Connect to this socket and issue XML commands to the 
UMLSKS and receive XML data results.  

The Socket Server can accept requests to execute API commands in the form of an XML query. The 
following sections describe the structures of each of the queries accepted by this version of the 
UMLSKS. Each query must be ended with the string %% and a new line character.  

5.2 General Queries 

5.2.1 XML Query getCurrentUMLSVersion 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getCurrentUMLSVersion version="1.0"/> 

5.2.2 XML Query getUMLSVersions 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getUMLSVersions version="1.0"/> 

5.2.3 XML Query getSWVersion 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getSWVersion version="1.0"/> 

5.2.4 XML Query query 
The XML query grammar for this function is described in Chapter  4.  

5.2.5 XML Query describeCurrentUMLSVersion 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<describeCurrentUMLSVersion version="1.0"/> 

5.2.6 XML Query describeUMLSVersions 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<describeUMLSVersions version="1.0"/> 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-2 

5.2.7 XML Query listDocEntryTypes 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listDocEntryTypes version="1.0"> 
    <docEntryType>DOC_ENTRY_TYPE</docEntryType> 
    <docEntrySubType>DOC_ENTRY_SUB_TYPE</docEntrySubType> 
</listDocEntryTypes> 

5.3 Metathesaurus Queries 

5.3.1 XML Query listDictionaries 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listDictionaries version="1.0"/> 

5.3.2 XML Query suggestSpelling 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<suggestSpelling version="1.0"> 
    <dictionary>DICTIONARY</dictionary> 
    <term>TERM_NAME</term> 
</suggestSpelling> 
 

where:  

DICTIONARY is the dictionary to be used to suggest the spelling. This 
dictionary is one of the dictionary names returned from the 
query listDictionaries. 

TERM_NAME is the term to be spell checked. 

5.3.3 XML Query getConceptName 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getConceptName version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
</getConceptName> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current releaseif not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag.  

CXXXXXXX is the concept unique identifier (CUI) 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-3 

SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the language restriction 

 

5.3.4 XML Query findCUI 
The XML query grammar for this function follows one of the following structures: 

<?xml version="1.0"?> 
<findCUI version="1.0"> 
    <release>RELEASE</release> 
    <conceptName>CONCEPT_NAME</conceptName> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    MATCHING_TECHNIQUE 
    <noSuppressibles/> 
</findCUI> 

-or- 
<?xml version="1.0"?> 
<findCUI version="1.0"> 
    <release>RELEASE</release> 
    <semtype>SEMANTIC_TYPE</semtype> 
</findCUI> 

-or- 
<?xml version="1.0"?> 
<findCUI version="1.0"> 
    <release>RELEASE</release> 
    <sab>SAB</sab> 
    <scd>SCD</scd> 
</findCUI> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 of the 
UMLSKS will continue to accept the tag <dbyear> as the 
release specifier tag. 

CONCEPT_NAME is the concept name 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the language restriction 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-4 

MATCHING_TECHNIQUE is one of the following: 
<normStr/> 
<normWord/> 
<word/> 
<exact/> 
<truncRight/> 
<truncLeft/> 
<approx/> 

<noSuppressibles/> is an optional field. If specified, then the suppressible 
synonyms will be included in the search for a matching 
term. 

SEMANTIC_TYPE is the semantic type whose concept identifiers are to be 
returned if the second form is used. 

SAB is the source abbreviation of interest if the third form is 
used. 

SCD is the unique code in the source if the third form is used. 
 

5.3.5 XML Query getConceptProperties 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getConceptProperties version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    <noSuppressibles/> 
</getConceptProperties> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 
<noSuppressibles/> is an optional field. If specified, then the suppressible 

synonyms will be included in the search for a matching 
term. 

 

5.3.6 XML Query findConcept 
The XML query grammar for this function is: 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-5 

<?xml version="1.0"?> 
<findConcept version="1.0"> 
    <release>RELEASE</release> 
    <conceptName>CONCEPT_NAME</conceptName> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    MATCHING_TECHNIQUE 
    <noSuppressibles/> 
</findConcept> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CONCEPT_NAME is the concept name 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 
MATCHING_TECHNIQUE is one of the following: 

<normStr/> 
<normWord/> 
<word/> 
<exact/> 
<truncRight/> 
<truncLeft/> 
<approx/> 

<noSuppressibles/> is an optional field. If specified, then the suppressible 
synonyms will be included in the search for a matching 
term. 

 

5.3.7 XML Query getBasicConceptProperties 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getBasicConceptProperties version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    <noSuppressibles/> 
</getBasicConceptProperties> 
 

where:  



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-6 

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 
<noSuppressibles/> is an optional field. If specified, then the suppressible 

synonyms will be included in the search for a matching 
term. 

 

5.3.8 XML Query findBasicConcept 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<findBasicConcept version="1.0"> 
    <release>RELEASE</release> 
    <conceptName>CONCEPT_NAME</conceptName> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    MATCHING_TECHNIQUE 
    <noSuppressibles/ > 
</findBasicConcept> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CONCEPT_NAME is the concept name 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 
MATCHING_TECHNIQUE is one of the following: 

<normStr/> 
<normWord/> 
<word/> 
<exact/> 
<truncRight/> 
<truncLeft/> 
<approx/> 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-7 

<noSuppressibles/> is an optional field. If specified, then the suppressible 
synonyms will be included in the search for a matching 
term. 

 

5.3.9 XML Query getTerminology 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getTerminology version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    <noSuppressibles/ > 
</getTerminology> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 
<noSuppressibles/> is an optional field. If specified, then the suppressible 

synonyms will be included in the search for a matching 
term. 

 

5.3.10 XML Query getTerms 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getTerms version="1.0"> 
    <release>RELEASE</release> 
    <term>TERM_NAME</term> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    <noSuppressibles/> 
</getTerms> 

 
-or- 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-8 

<?xml version="1.0"?> 
<findTerms version="1.0"> 
    <release>RELEASE</release> 
    <term>TERM_NAME</term> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    <noSuppressibles/> 
</findTerms> 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

TERM_NAME is the term name 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 
<noSuppressibles/> is an optional field. If specified, then the suppressible 

synonyms will be included in the search for a matching 
term. 

 

5.3.11 XML Query getDefinition 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getDefinition version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sablist> 
        SABLIST 
    </sablist> 
</getDefinition> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-9 

5.3.12 XML Query getSemanticType 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getSemanticType version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
</getSemanticType> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
 

5.3.13 XML Query getContext 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getContext version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sablist> 
        SABLIST 
    </sablist> 
</getContext> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 

5.3.14 XML Query getAssocExprs 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getAssocExprs version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sab>SAB</sab> 
</getAssocExprs> 

 
-or- 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-10 

<?xml version="1.0"?> 
<getAssocExprs version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sablist> 
        SABLIST 
    </sablist> 
</getAssocExprs> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
SAB is the source abbreviation 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
 

5.3.15 XML Query getCooccurrences 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getCooccurrences version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sab>SAB</sab> 
    <cot>COT</cot> 
</getCooccurrences> 
 

where:        

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
SAB is the source abbreviation 
COT is the co-occurrence type 

5.3.16 XML Query getRelations 
The XML query grammar for this function is: 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-11 

<?xml version="1.0"?> 
<getRelations version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    <rel>RELATION</rel> 
</getRelations> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 
RELATION is the optional relationship name 

 

5.3.17 XML Query getStringAttributes 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getStringAttributes version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sab>SAB</sab> 
    <language>LANGUAGE</language> 
    <attrName>ATTRIBUTE_NAME</attrName> 
</getStringAttributes> 
 

-or- 
<?xml version="1.0"?> 
<getStringAttributes version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    <attrName>ATTRIBUTE_NAME</attrName> 
</getStringAttributes> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-12 

versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
SAB is the source abbreviation 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 
ATTRIBUTE_NAME is the optional attribute name 

5.3.18 XML Query getLocator –or- getLocators 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getLocator version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
<getLocator> 

-or- 
<?xml version="1.0"?> 
<getLocators version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
<getLocators> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 

5.3.19 XML Query getMeSHEntries 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getMeSHEntries version="1.0"> 
    <release>RELEASE</release> 
    <term>TERM_NAME</term> 
</getMeSHEntries> 
 

where:  

RELEASE  is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

TERM_NAME is the term name 
 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-13 

5.3.20 XML Query getMeSHInfo 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getMeSHInfo version="1.0"> 
    <release>RELEASE</release> 
    <dui>DUI</dui> 
</getMeSHInfo> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

DUI is the unique identifier 

5.3.21 XML Query getRawRecords 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getRawRecords version="1.0"> 
    <release>RELEASE</release> 
    <cui>CXXXXXXX</cui> 
    <language>LANGUAGE</language> 
    <tableName>TABLE_NAME</tableName> 
</getRawRecords> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) 
LANGUAGE is the optional language restriction 
TABLE_NAME is the name of the table to be returned 

5.3.21.1 XML Query query 
The XML query grammar for this function is described in Chapter  4.  

5.3.22 XML Query describeSource 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<describeSource version="1.0"> 
    <release>RELEASE</release> 
    <sab>SAB</sab> 
</describeSource> 
 

where:        



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-14 

RELEASE is the optional UMLS release of interest. If not specified, 
then the current UMLS release is used. Version 2.12.1 and 
later versions of the UMLSKS will continue to accept the 
tag <dbyear> as the release specifier tag. 

SAB is the source abbreviation 

5.3.23 XML Query listSources 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listSources version="1.0"> 

<release>RELEASE</release> 
</listSources> 

 
where:  

RELEASE is the optional UMLS of interest (defaults to the current 
release if not specified). Version 2.12.1 and later versions of 
the UMLSKS will continue to accept the tag <dbyear> as 
the release specifier tag. 

5.3.24 XML Query findLUI 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<findLUI version="1.0"> 
    <release>RELEASE</release> 
    <termName>TERM_NAME</termName> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    <noSuppressibles/> 
</findLUI> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

TERM_NAME is the term name 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 
<noSuppressibles/> is an optional field. If specified, then the suppressible 

synonyms will be included in the search for a matching 
term. 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-15 

5.3.25 XML Query getTermsForLUI 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getTermsForLUI version="1.0"> 
    <release>RELEASE</release> 
    <lui>LUI</lui> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
    <noSuppressibles/> 
</getTermsForLUI> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

LUI is the lexical unique identifier (LUI) 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 
<noSuppressibles/> is an optional field. If specified, then the suppressible 

synonyms will be included in the search for a matching 
term. 

5.3.26 XML Query findSUI 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<findSUI version="1.0"> 
    <release>RELEASE</release> 
    <string>STRING</string> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
</findSLUI> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

STRING is the string to be mapped 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-16 

SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 

5.3.27 XML Query getStringsForSUI 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getStringsForSUI version="1.0"> 
    <release>RELEASE</release> 
    <sui>SUI</sui> 
    <sablist> 
        SABLIST 
    </sablist> 
    <language>LANGUAGE</language> 
</getStringsForSUI> 
 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

SUI is the string unique identifier (SUI) 
SABLIST is the optional list of sources of the form: 

<sab> SAB </sab> 

where SAB is the source abbreviation 
LANGUAGE is the optional language restriction 

 

5.3.28 XML Query listStrAttrs 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listStrAttrs version="1.0"> 

<release>RELEASE</release> 
</listStrAttrs> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

5.3.29 XML Query listMeSHQuals 
The XML query grammar for this function is: 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-17 

<?xml version="1.0"?> 
<listMeSHQuals version="1.0"> 

<release>RELEASE</release> 
</listMeSHQuals> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

5.3.30 XML Query describeUMLSChanges 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<describeUMLSChanges version="1.0"> 
    <release>RELEASE</release> 
  … 
    <release>RELEASE-N</release> 
    <cui>CUI</sablist> 
  … 
    <cui>CUI-N</cui> 
</describeUMLSChanges> 
 

-or- 
<?xml version="1.0"?> 
<describeUMLSChanges version="1.0"> 
    <umlsRelease>UMLS_RELEASE</umlsRelease> 
    <release>RELEASE</release> 
  … 
    <release>RELEASE-N</release> 
    <cui>CUI</sablist> 
  … 
    <cui>CUI-N</cui> 
</describeUMLSChanges> 

where:  

UMLS_RELEASE is the optional identifier for the version of the UMLS whose 
changes are to be returned. If this value is not specified, 
then the current release’s changes are described. 

RELEASE, RELEASE-N is the optional set of UMLS releases of interest. If not 
specified, all releases are requested. 

CUI, CUI-N is the optional concept unique identifier of interest If not 
specified, all CUIs are requested. 

 

5.3.31 XML Query listTermTypes 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listTermTypes version="1.0"> 

<release>RELEASE</release> 
</listTermTypes> 

 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-18 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

5.3.32 XML Query listCooccurrenceTypes 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listCooccurrenceTypes version="1.0"> 

<release>RELEASE</release> 
</listCooccurrenceTypes> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

5.3.33 XML Query listStringTypes 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listStringTypes version="1.0"> 

<release>RELEASE</release> 
</listStringTypes> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.12.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

5.3.34 XML Query listRelationTypes 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listRelationTypes version="1.0"> 

<release>RELEASE</release> 
</listRelationTypes> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

  



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-19 

5.3.35 XML Query listMetaTableNames 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listMetaTableNames version="1.0"> 

<release>RELEASE</release> 
</listMetaTableNames> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

 

5.3.36 XML Query listRelationTypes 
The XML query grammar for this function is: 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 of the 
UMLSKS will continue to accept the tag <dbyear> as the 
release specifier tag. 

5.4 Semantic Network Queries 

5.4.1 XML Query findSemType 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<findSemType version="1.0"> 

<release>RELEASE</release> 
<contains>STRING</contains> 
<expandTree/> 

</findSemType> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

STRING is the required string that the returned semantic type(s) 
should contain in its name 

<expandTree/> is an optional field. If specified, then the entire hierarchy for 
the semantic type(s) will be returned, including all 
ancestors, siblings, and children in expanded form. 

 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-20 

5.4.2 XML Query getSemTypeProperties 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getSemTypeProperties version="1.0"> 

<release>RELEASE</release> 
<semtype>SEMTYPE</semtype> 
<expandTree/> 

</getSemTypeProperties> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

SEMTYPE is the required name/unique identifier for the semantic type 
<expandTree/> is an optional field. If specified, then the entire hierarchy for 

the semantic type(s) will be returned, including all 
ancestors, siblings, and children in expanded form. 

 

5.4.3 XML Query getSemTypeAncestors 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getSemTypeAncestors version="1.0"> 

<release>RELEASE</release> 
<semtype>SEMTYPE</semtype> 
<expandTree/> 

</getSemTypeAncestors> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

SEMTYPE is the required name/unique identifier for the semantic type 
<expandTree/> is an optional field. If specified, then the entire hierarchy for 

the semantic type(s) will be returned, including all 
ancestors, siblings, and children in expanded form. 

 

5.4.4 XML Query getSemTypeSiblings 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listRelationTypes version="1.0"> 

<release>RELEASE</release> 
<semtype>SEMTYPE</semtype> 
<expandTree/> 

</listRelationTypes> 
 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-21 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

SEMTYPE is the required name/unique identifier for the semantic type 
<expandTree/> is an optional field. If specified, then the entire hierarchy for 

the semantic type(s) will be returned, including all 
ancestors, siblings, and children in expanded form. 

 

5.4.5 XML Query listSemTypeIds 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listSemTypeIds version="1.0"> 

<release>RELEASE</release> 
</listSemTypeIds> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

 

5.4.6 XML Query findSemRelation 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<findSemRelation version="1.0"> 

<release>RELEASE</release> 
<contains>STRING</contains> 
<expandTree/> 

</findSemRelation> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

STRING is the required string that the returned semantic relation(s) 
should contain in its name 

<expandTree/> is an optional field. If specified, then the entire hierarchy for 
the semantic relation(s) will be returned, including all 
ancestors, siblings, and children in expanded form. 

 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-22 

5.4.7 XML Query getSemRelationProperties 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listRelationTypes version="1.0"> 

<release>RELEASE</release> 
<semrel>SEMREL</semrel> 
<expandTree/> 

</listRelationTypes> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

SEMREL is the required name/unique identifier for the semantic 
relation 

<expandTree/> is an optional field. If specified, then the entire hierarchy for 
the semantic relation(s) will be returned, including all 
ancestors, siblings, and children in expanded form. 

 

5.4.8 XML Query getSemRelationAncestors 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listRelationTypes version="1.0"> 

<release>RELEASE</release> 
<semrel>SEMREL</semrel> 
<expandTree/> 

</listRelationTypes> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

SEMREL is the required name/unique identifier for the semantic 
relation 

<expandTree/> is an optional field. If specified, then the entire hierarchy for 
the semantic relation(s) will be returned, including all 
ancestors, siblings, and children in expanded form. 

 

5.4.9 XML Query listSemRelationIds 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listSemRelationIds version="1.0"> 

<release>RELEASE</release> 
</listSemRelationIds> 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-23 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

 

5.4.10 XML Query existsAssociativeRelation 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listRelationTypes version="1.0"> 

<release>RELEASE</release> 
<lhs_semtype>LHS_SEMTYPE</lhs_semtype> 
<semrel>SEMREL</semrel> 
<rhs_semtype>RHS_SEMTYPE</rhs_semtype> 

</listRelationTypes> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

LHS_SEMTYPE is the required name/unique identifier for the semantic type 
appearing on the left hand side of the relationship 

SEMREL is the required name/unique identifier for the semantic 
relation 

RHS_SEMTYPE is the required name/unique identifier for the semantic type 
appearing on the right hand side of the relationship 

 

5.4.11 XML Query getAssociativeRelations 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listRelationTypes version="1.0"> 

<release>RELEASE</release> 
<lhs_semtype>LHS_SEMTYPE</lhs_semtype> 
<semrel>SEMREL</semrel> 
<rhs_semtype>RHS_SEMTYPE</rhs_semtype> 
<expandTree/> 

</listRelationTypes> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

LHS_SEMTYPE is the required name/unique identifier for the semantic type 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-24 

appearing on the left hand side of the relationship 
SEMREL is the required name/unique identifier for the semantic 

relation 
RHS_SEMTYPE is the required name/unique identifier for the semantic type 

appearing on the right hand side of the relationship 
<expandTree/> is an optional field. If specified, then the entire hierarchy for 

the semantic types and semantic relation will be returned, 
including all ancestors, siblings, and children in expanded 
form. 

 

5.4.12 XML Query existsHierRelRelRelation 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listRelationTypes version="1.0"> 

<release>RELEASE</release> 
<lhs_semrel>LHS_SEMREL</lhs_semrel> 
<semrel>SEMREL</semrel> 
<rhs_semrel>RHS_SEMREL</rhs_semrel> 

</listRelationTypes> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

LHS_SEMREL is the required name/unique identifier for the semantic 
relation appearing on the left hand side of the relationship 

SEMREL is the required name/unique identifier for the semantic 
relation 

RHS_SEMREL is the required name/unique identifier for the semantic 
relation appearing on the right hand side of the relationship 

 

5.4.13 XML Query listSemGroups 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listSemGroups version="1.0"> 

<release>RELEASE</release> 
</listSemGroups> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-25 

5.4.14 XML Query listSemTypes 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listSemTypes version="1.0"> 

<release>RELEASE</release> 
<semgroup>SEMGROUP</semgroup> 

</listSemTypes> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

SEMGROUP is the required name for the semantic group 
 

5.4.15 XML Query getSemGroup 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listRelationTypes version="1.0"> 

<release>RELEASE</release> 
<cui>CXXXXXXX</cui> 

</listRelationTypes> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

CXXXXXXX is the concept unique identifier (CUI) whose semantic group 
is to be returned. 

5.4.16 XML Query findBasicSemType 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<findBasicSemType version="1.0"> 

<release>RELEASE</release> 
<contains>STRING</contains> 
<expandTree/> 

</findBasicSemType> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

STRING is the required string that the returned semantic type(s) 
should contain in its name 



Chapter 5 – Using the UMLSKS Socket Server UMLSKS Developer’s Guide 

5-26 

<expandTree/> is an optional field. If specified, then the entire hierarchy for 
the semantic type(s) will be returned, including all 
ancestors, siblings, and children in expanded form. 

5.4.17 XML Query findBasicSemRelation 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<findBasicSemRelation version="1.0"> 

<release>RELEASE</release> 
<contains>STRING</contains> 
<expandTree/> 

</findBasicSemRelation> 
 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

STRING is the required string that the returned semantic relation(s) 
should contain in its name 

<expandTree/> is an optional field. If specified, then the entire hierarchy for 
the semantic relation(s) will be returned, including all 
ancestors, siblings, and children in expanded form. 

5.4.18 XML Query listSemNetTableNames 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<listSemNetTableNames version="1.0"> 

<release>RELEASE</release> 
</listSemNetTableNames> 

 
where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

 

5.5 SPECIALIST Lexicon Queries 

5.5.1 XML Query getLexicalRecords 
The XML query grammar for this function is: 

<?xml version="1.0"?> 
<getLexicalRecords version="1.0"> 

<release>RELEASE</release> 
<term>TERM_NAME</term> 

</getLexicalRecords> 
 



UMLSKS Developer’s Guide Chapter 5 – Using the UMLSKS Socket Server  

5-27 

where:  

RELEASE is the optional UMLS release of interest (defaults to the 
current release if not specified). Version 2.1 and later 
versions of the UMLSKS will continue to accept the tag 
<dbyear> as the release specifier tag. 

TERM is the term whose lexical records are to be returned. 
 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


